
#### RENAL PHYSIOLOGY SOLUTES, FLUID, AND BLOOD PRESSURE

Kenneth Alonso, MD, FACP

#### **RENAL CIRCULATION**



Source: Barrett KE, Barman SM, Boitano S, Brooks H: Ganang's Review of Medical Physiology, 23rd Edition: http://www.accessmedicine.com

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

## Renal blood flow

- Sympathetic innervation to both efferent and afferent arterioles affects α-adrenergic receptors and leads to vasoconstriction.
- Both renal blood flow (RBF) and glomerular filtration rates (GFR) fall.
- Angiotensin II is a potent vasoconstrictor.
- <u>As it effects efferent arterioles more than it does</u> <u>afferent arterioles, low levels produce an increase in</u> <u>GFR.</u>
- High levels, decrease GFR.
- <u>Arterial pressure is raised even at the expense of</u> renal blood flow.

## Angiotensin II

- Increases systemic vascular resistance:
- <u>Stimulate vascular smooth muscle contraction</u>
- <u>Agument norepinephrine release</u>.
- It causes the release of aldosterone from the adrenal cortex.
- Na<sup>+</sup> excretion is decreased by increasing Na<sup>+</sup> reabsorption by proximal tubules of the kidney.
- Opposed by atrial natriuretic peptide.
- It causes the release of vasopressin from the posterior pituitary gland, leading to water retention by the kidney.
- Opposed by atrial natriuretic peptide.

## Angiotensin II

- Angiotensin II increases proximal tubular reabsorption
- Binds to receptors on the luminal and basolateral membranes
- Stimulate Na+/H+ antiporter
- Stimulate Na<sup>+</sup>/HCO<sub>3</sub> cotransport
- Stimulate Na<sup>+</sup>/K<sup>+</sup> ATPase activity.
- Increase interstitial fluid colloid osmotic pressure and decrease interstitial fluid hydrostatic pressure.

## Angiotensin II

- Stimulate Na<sup>+</sup> reabsorption
- The loop of Henle
- The macula densa
- Distal nephron segments

#### Aldosterone

- Aldosterone stimulates Na<sup>+</sup> reabsorption and K<sup>+</sup> secretion.
- (1) <u>Aldosterone binds to mineralocorticoid receptors</u>
- Stimulate synthesis or activation of the Na+-K+-ATPase pump on the basolateral epithelial membrane
- These effects on the genome are mediated by activation of gene transcription and <u>require 60 to 90</u> <u>minutes to occur</u> after administration of aldosterone.

#### Aldosterone

- (2) Aldosterone also exerts rapid nongenomic effects on the cardiovascular and renal systems.
- Aldosterone increases the Na<sup>+</sup> current in the cortical collecting tubule
- Activate the amiloride-sensitive Na<sup>+</sup> channel on the luminal side of the epithelial membrane.
- Stimulates the Na+-H+ exchanger in a <u>few minutes</u> after application.

### Nitric oxide and renal function

- Reduced nitric oxide (NO) synthesis decreases pressure natriuresis and increases blood pressure.
- Decreased endothelial-derived nitric oxide synthesis impairs renal Na<sup>+</sup> excretory function
- Increase basal renal vascular resistance
- Enhance the renal vascular responsiveness to:
- Angiotensin II
- Norepinephrine
- Activate the renin–angiotensin system.

### Nitric oxide and renal function

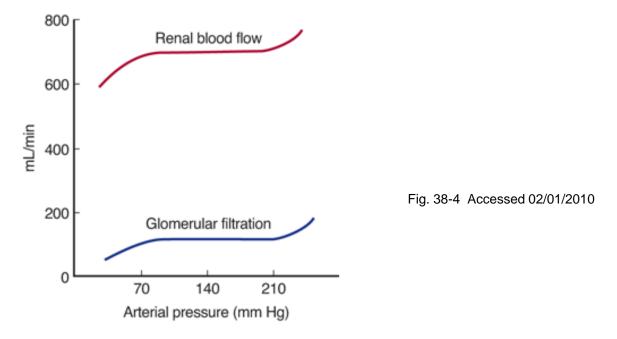
- Reductions in NO synthesis also impair sodium excretory function
- By directly increasing tubular reabsorption
- Or by altering intrarenal renal interstitial hydrostatic pressure or medullary blood flow.

### Other controls of renal function

- TNF-α, IL-1, and endothelin-1 also function as vasoconstrictors.
- Activation of the endothelin-a receptor constricts, while the endothelin-b receptor dilates renal vessels.

## Atrial natriuretic peptide

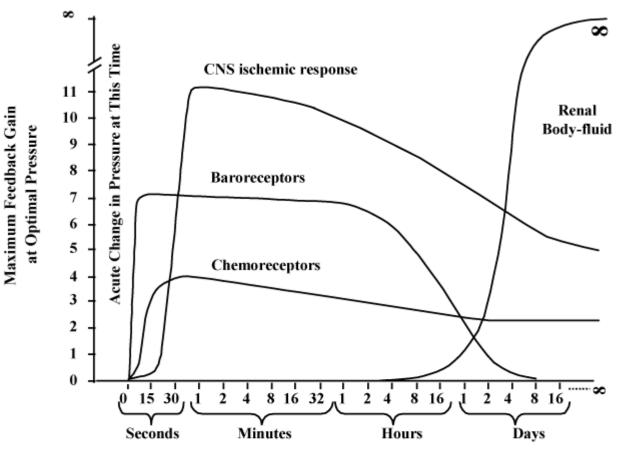
- Plasma levels of atrial natriuretic peptide are elevated in conditions associated with enhanced sodium excretion.
- Acute blood volume expansion consistently elevates circulating levels of atrial natriuretic peptide .
- Chronic increases in dietary sodium intake also raise circulating levels of atrial natriuretic peptide .


#### Renal blood flow

- Prostaglandins are produced locally in the kidney.
- Their production is stimulated by the same forces that stimulate sympathetic activity and angiotensin II production.
- They are vasodilatory and clearly protective of renal blood flow.
- Renal blood flow is unchanged between systemic blood pressures of 80-200 mmHg (<u>Autoregulation</u>).

## Autoregulation of renal blood flow

- Arteriolar resistance is controlled at the level of the afferent arteriole.
- Reflex stretching of smooth muscle in blood vessel walls leads to intracellular Ca<sup>2+</sup> release and increased tension.
- When RBF and GFR increase, increased solute and water delivery is sensed at the macula densa.
- Vasoactive substances (possibly adenosine) that constrict afferent arterioles is secreted, reducing RBF and GFR.


#### Autoregulation of renal blood flow



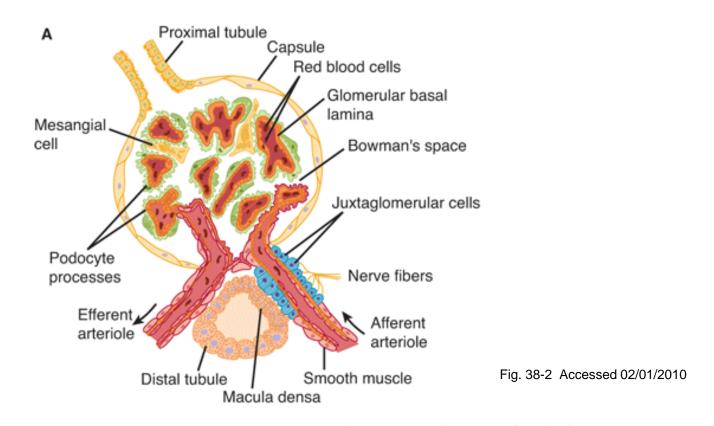
Source: Barrett KE, Barman SM, Boitano S, Brooks H: Ganang's Review of Medical Physiology, 23rd Edition: http://www.accessmedicine.com

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

## Blood pressure control mechanisms



Time After Sudden Change in Pressure


Source: Fuster V, O'Rourke RA, Walsh RA, Poole-Wilson P: Hurst's The Heart, 12th Edition: http://www.accessmedicine.com

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

Source: Redrawn from Guyton AC, Hall JE. *Textbook of Medical Physiology*, 11th ed. Philadelphia: Elsevier, 2006, p. 230.

Fig. 69-3 Accessed 04/01/2010

### GLOMERULUS



Source: Barrett KE, Barman SM, Boitano S, Brooks H: Ganang's Review of Medical Physiology, 23rd Edition: http://www.accessmedicine.com

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

## Glomerular filtration

- Filtration is dependent upon pore size and electric charge.
- The basement membrane, endothelium, podocytes, and foot processes are negatively charged.
- Fluid movement is directly related to:
- The water permeability or hydraulic conductance of the glomerular capillary wall
- The hydrostatic pressure in the capillaries
- Constant along its length in the glomerulus as opposed to the systemic circulation
- Is directly opposed by the hydrostatic pressure of fluid in Bowman's space as well as the oncotic pressure in glomerular capillaries.

### **Glomerular filtration**

- Unfiltered plasma leaves the glomerular capillaries via efferent arterioles. and enters the peritubular space.
- As more fluid is filtered out of glomerular capillary blood, protein concentration and osmotic pressure increase in the peritubular space
- Favor the reabsorption of iso-osmotic fluid in the lateral intracellular space between the proximal tubules.
- Noted in extracellular fluid volume contraction

## Juxtamedullary nephron

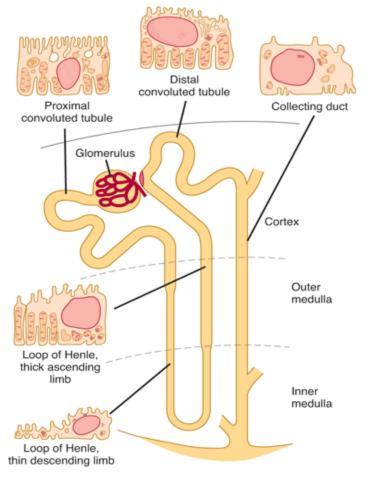


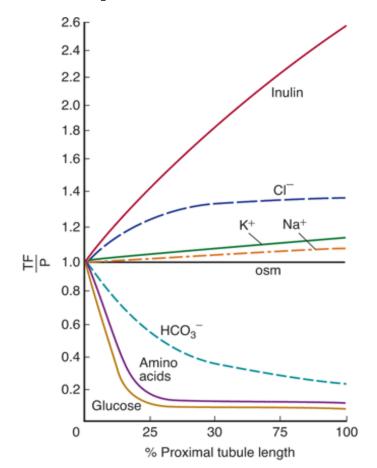

Fig. 38-1 Accessed 02/01/2010

Source: Barrett KE, Barman SM, Boitano S, Brooks H: Ganang's Review of Medical Physiology, 23rd Edition: http://www.accessmedicine.com

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

#### Major nephron segments

| Segment                                                                                                         | Function                    | Mechanism                                                                        | Action of<br>hormones                                                        |
|-----------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Early proximal<br>tubule                                                                                        | Iso-osmotic<br>reabsorption | Na+ cotransport<br>with glucose,<br>amino acids,<br>phosphate<br>Na+-H+ exchange | PTH inhibits<br>Na+-phosphate<br>cotransport<br>Angiotensin II<br>stimulates |
| Late proximal<br>tubule<br>(no glucose,<br>amino acid, little<br>bicarbonate ion;<br>high Cl-<br>concentration) | Iso-osmotic<br>reabsorption | NaCl<br>reabsorption<br>driven by Cl-<br>gradient                                |                                                                              |


## MAJOR NEPHRON SEGMENTS

| Segment                                                                                          | Function                                                                                                                                                                                                                            | Mechanism                  | Action of<br>hormones                          |
|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------------|
| Thick Ascending<br>Limb of the Loop<br>of Henle<br>(load dependent)<br>(impermeable to<br>water) | Reabsorption of<br>NaCl without<br>water dilution of<br>tubular fluid<br>Single effect of<br>countercurrent<br>multiplication<br>Reabsorption of<br>Ca <sup>2+</sup> and Mg <sup>2+</sup><br>driven by lumen-<br>positive potential | Na+-K+-2Cl-<br>cotransport | ADH stimulates                                 |
| Early distal<br>tubule<br>(load dependent)<br>(impermeable to<br>water)                          | Reabsorption of<br>NaCl without<br>water<br>Dilution of<br>tubular fluid                                                                                                                                                            | Na+-CI-<br>cotransport     | PTH stimulate<br>Ca <sup>2+</sup> reabsorption |

#### Major nephron segments

| Segment                                                                    | Function                    | Mechanism      | Action of<br>hormones         |
|----------------------------------------------------------------------------|-----------------------------|----------------|-------------------------------|
| Late distal<br>tubule and<br>collecting ducts<br>(principal cells)         | Reabsorption of NaCI        | Na+ channels   | Aldosterone<br>stimulates     |
|                                                                            | K+secretion                 | K+ channels    | Aldosterone<br>stimulates     |
|                                                                            | Variable water reabsorption | Water channels | Aldosterone and ADH stimulate |
| Late distal<br>tubule and<br>collecting cells<br>(α-intercalated<br>cells) | Reabsorption of<br>K+       | H+-K+ ATPase   |                               |
|                                                                            | Secretion of H+             | H+ ATPase      | Aldosterone<br>stimulates     |

# Reabsorption of solutes in the proximal tubule.



TF/P, tubular fluid:plasma concentration ratio.

(Courtesy of FC Rector Jr.)

Fig. 38-9 Accessed 02/01/2010

Source: Barrett KE, Barman SM, Boitano S, Brooks H: Ganang's Review of Medical Physiology, 23rd Edition: http://www.accessmedicine.com

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

### Extracellular fluid

- In the steady state, intracellular osmolality is the same as extracellular osmolality.
- To maintain this equality, water shifts freely across cell membranes.
- Large solutes such as NaCl, NaHCO<sub>3</sub>, and large sugars are confined to the extracellular fluid.
- Adjustment of osmolality of excreted urine occurs in the vasa recta of the kidney.

#### Iso-osmotic gains and losses

- If 0.9% saline is infused, the fluid gained is isoosmotic.
- Extracellular fluid volume increases
- Decreased hematocrit, total protein because of dilution
- Intracellular fluid volume as well as osmolality does not change.

#### Iso-osmotic gains and losses

- In diarrhea or with burns,
- The fluid lost is iso-osmotic.
- Extracellular fluid volume diminishes
- Increased hematocrit, total protein because of volume contraction
- Intracellular fluid volume as well as osmolality does not change.

## Hyper-osmotic gains and losses

- With high salt intake,
- The extracellular fluid volume expands as the fluid gained is hyperosmotic
- Decreased total protein as volume contracts
- Hematocrit also decreases as water shifts from cell, MCV falls
- Intracellular fluid volume decreases. Osmolality is increased.

## Hyper-osmotic gains and losses

- With sweating, fever, or in diabetes insipidus
- Salt is lost
- Hyperosmotic fluid loss
- Extracellular and intracellular fluid volumes fall.
- Osmolality increases.
- Total protein increases because of volume contraction;
- however, hematocrit does not change as water shift from cell reduces rbc size (MCV falls).

## Hypo-osmotic gains and losses

- <u>With SIADH</u>,
- Water is retained (hypo-osmotic fluid).
- Extracellular fluid volume expands
- Total protein decreases by dilution
- Hematocrit remains unchanged as dilution offset by water shift into cell, increasing rbc size (with rise in MCV).
- Intracellular fluid volume increases.
- Osmolality decreases.

## Hypo-osmotic gains and losses

- With adrenal insufficiency,
- Na<sup>+</sup> is lost (hypo-osmotic fluid)
- Extracellular fluid volume decreases
- Increased total protein as volume contracts
- Hematocrit also increases by water shift into cell, increasing rbc size (with rise in MCV).
- Intracellular fluid volume increases.
- Osmolality is elevated.

## Hypovolemia

- Orthostatic hypotension or orthostatic tachycardia point to hypovolemia.
- Fractional excretion of urea (FE<sub>urea</sub>) is <55% or FE<sub>Na+</sub> <0.5%.</li>
- The usual causes are:
- Salt loss with free-water intake (vomiting, diarrhea, burns)
- Diuretics
- Renal disease
- Adrenal insufficiency.

## Hypervolemia

- Edema, ascites, jugular venous distention, or an S<sub>3</sub> gallop point to hypervolemia.
- The usual causes are:
- Heart failure
- Cirrhosis
- Nephrotic syndrome.

### Evaluation of fluid loss

- Auscultatory blood pressures 4-15 mmHg below direct systolic blood pressure measurement, and 3-6 mmHg above direct diastolic blood pressure measurement suggest hypovolemia.
- 2-4% normovolemic individuals increase pulse >30 beats per minute when moving from supine to standing. (>20 bpm if sitting to standing).
- Useful screen in blood loss.
- In patients thought to be dehydrated, a urine specific gravity >1.020 is associated with a positive likelihood ratio, LR+, of 11, while the LR- is 0.1 for hypovolemia.

#### Evaluation of fluid loss

- Dry axilla in elderly (LR+ 2.8, LR- 0.06)
- Pulse increment even though the BUN/creatinine ratio is <25 and serum osm is >295 mosm (LR+ 1.7 LR- 0.8) are suggestive for hypovolemia unrelated to blood loss.
- In children, capillary refill time >2s, and the presence of dry mucous membranes or absent tears is strongly associated with dehydration (LR+ 6.1, LR- 0.24).

## Evaluation of fluid loss

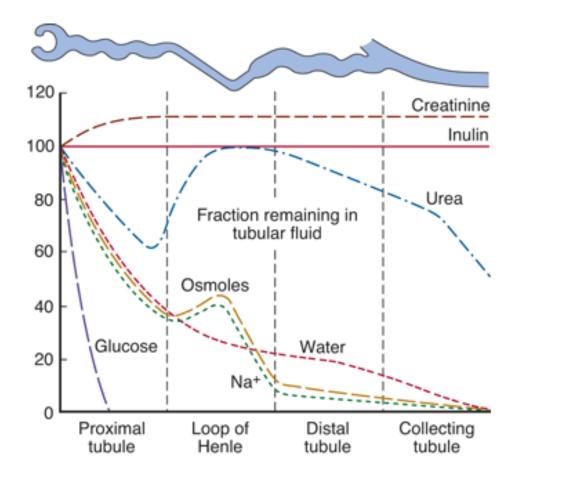
- Loss of up to 15% of circulating volume (750 ml in an 70 kg adult) may not be associated with alteration in heart rate, blood pressure, respiratory rate, or urine output.
- Pulse pressure may be increased.
- Loss of 15-30% of circulating volume (750–1500 ml) is usually associated with elevated heart rate (>100) and respiratory rate.
- Blood pressure may still be normal though the pulse pressure is decreased.
- Urine output begins to fall (<30 ml/min).
- The patient may be mildly anxious.

# Evaluation of fluid loss

- Loss of 30-40% of circulating volume (1500-2000 ml) is usually associated with significantly elevated heart rate (>120) and respiratory rate (>30).
- Blood pressure and pulse pressure are decreased.
- Urine output falls (<15 ml/hr).
- The patient may be anxious, confused.

# Evaluation of fluid loss

- Loss of >40% of circulating volume (>2000 ml) is usually associated with a very elevated heart rate (>140) and respiratory rate (>30).
- Blood pressure and pulse pressure are decreased.
- Urine output is negligible.
- The patient may be confused and lethargic.

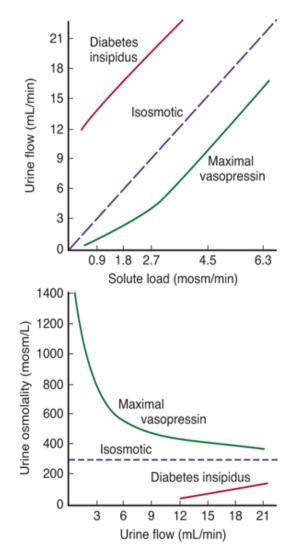

#### Volume status

- The usual causes of a low Na<sup>+</sup> with normal circulating volume:
- Carbamazepine (20-30% of patients
- SIADH (cancer, 15% of patients)
- Chlorpropamide (7-8% of patients)
- Hypothyroidism
- Inadequate ACTH production
- Ecstasy
- Strenuous exercise
- Psychogenic polydipsia
- Cortisol and hyponatremia both suppress ADH.

#### Volume status

- Total body water (TBW) = 0.6 (men, but 0.5, women)
  x weight in kg (men)
- Change in Na+ per liter of solution infused: (Infusate <sub>Na+</sub> - Plasma <sub>Na+</sub>)/ (TBW + 1)
- Target change of 0.5 mEq/L/hr

# Vasopressin effect on filtration




(Modified from Sullivan LP, Grantham JJ: *Physiology of the Kidney*, 2nd ed. Lea & Febiger, 1982.)

Fig. 38-14 Accessed 02/01/2010

Source: Barrett KE, Barman SM, Boitano S, Brooks H: Ganang's Review of Medical Physiology, 23rd Edition: http://www.accessmedicine.com

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.



# Osmotic pressure and urine flow

(Reproduced with permission from Berliner RW, Giebisch G in: *Best and Taylor's Physiological Basis of Medical Practice,* 9th ed. Brobeck JR (editor). Williams & Wilkins, 1979.)

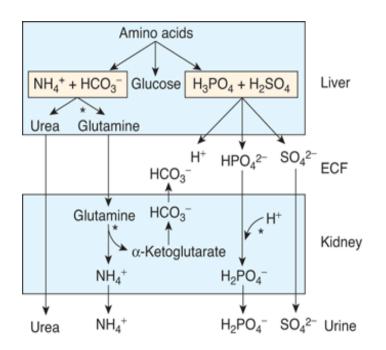
Fig. 38-18 Accessed 02/01/2010

Source: Barrett KE, Barman SM, Boitano S, Brooks H: Ganong's Review of Medical Physiology, 23rd Edition: http://www.accessmedicine.com

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

#### Acid-base balance

- The cells of the proximal and distal tubules secrete hydrogen ions.
- Acidification also occurs in the collecting ducts.
- The reaction that is primarily responsible for H<sup>+</sup> secretion in the proximal tubules is Na<sup>+</sup>–H<sup>+</sup> exchange.
- Na<sup>+</sup> is absorbed from the lumen of the tubule and H<sup>+</sup> is excreted.


#### Acid-base balance

- <u>The maximal H+ gradient against which the transport</u> mechanisms can secrete in humans corresponds to a urine pH of about 4.5.
- Three important reactions in the tubular fluid remove free H<sup>+</sup> permitting more acid to be secreted:
- $HCO_3^-$  to form  $CO_2$  and  $H_2O$
- $HPO_4^{2-}$  to form  $H_2PO_4^{--}$
- with  $NH_3$  to form  $NH_4^+$ .

#### Acid-base balance

- Carbonic anhydrase catalyzes the formation of H<sub>2</sub>CO<sub>3</sub>, and drugs that inhibit carbonic anhydrase depress secretion of acid by the proximal tubules.
- Renal acid secretion is altered by changes:
- In the intracellular pCO<sub>2</sub>
- K<sup>+</sup> concentration
- Carbonic anhydrase level
- Adrenocortical hormone concentration.

# Disposition of metabolically produced acid loads.



Sites where regulation occurs are indicated by asterisks.

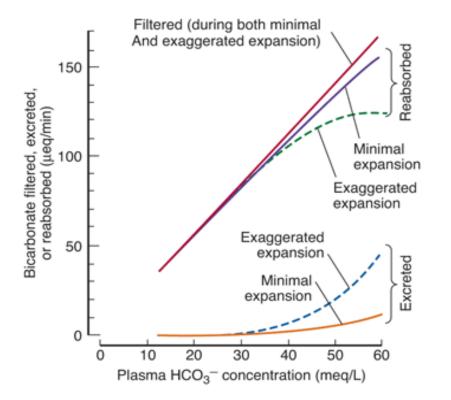

(Modified and reproduced with permission from Knepper MA, et al: Ammonium, urea, and systemic pH regulation. Am J Physiol 1987;235:F199.)

Fig. 40-5 Accessed 02/01/2010

Source: Barrett KE, Barman SM, Boitano S, Brooks H: Ganong's Review of Medical Physiology, 23rd Edition: http://www.accessmedicine.com

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

# Extracellular fluid volume and its effects on bicarbonate



(Reproduced with permission from Valtin H: *Renal Function,* 2nd ed. Little, Brown, 1983.)

Fig. 40-4 Accessed 02/01/2010

Source: Barrett KE, Barman SM, Boitano S, Brooks H: Ganang's Review of Medical Physiology, 23rd Edition: http://www.accessmedicine.com

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

# Regulation of elevated Na<sup>+</sup>

- Extracellular fluid volume expands as the fluid gained is hyperosmotic.
- Intracellular fluid volume decreases.
- Osmolality is increased.
- <u>In response</u>, sympathetic activity decreases
- Dilate afferent arterioles
- GFR increases
- Decrease in protein concentration in peritubular tissues.
- Na<sup>+</sup> reabsorption falls in proximal tubules.

# Regulation of elevated Na<sup>+</sup>

- Atrial natriuertic peptide (ANP) and angiotensin II constrict efferent arterioles
- GFR increases
- Na<sup>+</sup> reabsorption falls in collecting ducts (ANP)
- Na<sup>+</sup> reabsorption falls in proximal tubule
- Angiotensin II stimulates aldosterone, production

# Regulation of elevated Na<sup>+</sup>

- Dopamine is a natriuretic hormone.
- It increases Na<sup>+</sup> excretion through signal transduction by mediating the synchronized downregulation of basolateral Na<sup>+</sup>/K<sup>+</sup>-ATPase and apical Na<sup>+</sup>/H<sup>+</sup> antiporter isoform-3 (NHE3) after binding to D<sub>1</sub> and D<sub>2</sub> receptors in the nephron.

# Regulation of low Na<sup>+</sup>

- With sweating, fever, or in diabetes insipidus, salt is lost
- Hyperosmotic fluid loss
- Extracellular and intracellular fluid volumes fall.
- Osmolality increases.
- Sympathetic activity increases
- Constrict afferent glomerular arteries
- Increases GFR
- Increases protein concentration in peritubular fluid
- Na<sup>+</sup> reabsorption increases in proximal tubules.

# Regulation of low Na<sup>+</sup>

- Atrial natriuretic peptide and angiotensin II levels fall
- Leads to relative dilatation of efferent arterioles
- GFR falls
- Na<sup>+</sup> reabsorption decreases in collecting ducts (ANP effect)
- Na<sup>+</sup> reabsorption decreases in proximal tubules
- Angiotensin II stimulates production of aldosterone.

# Renin-angiotensin response

- Increased extracellular fluid volume leads to increased stroke volume.
- To maintain homeostasis (and a stable cardiac output) peripheral resistance falls through expansion of venous capacitance vessels (the microcirculation).
- Renal blood flow decreases and delivery of Na<sup>+</sup> and K<sup>+</sup> to renal tubules increases.
- Salt and water are lost.
- Renin secretion is impaired; angiotensin production falls.
- Aldosterone secretion is not augmented.

#### Renin-angiotensin response

- Decreased extracellular fluid volume leads to a decrease in systemic arterial pressure.
- To maintain homeostasis, renal sympathetic nerve activity increases, resulting in renal arteriolar vasoconstriction, further diminishing glomerular capillary blood flow and delivery of Na<sup>+</sup> and K<sup>+</sup> to renal tubules.
- Renin release increases; angiotensin production is stimulated.
- This leads to systemic vasoconstriction and a rise in arterial pressure.
- The production of aldosterone increases, enhancing renal tubular absorption of Na<sup>+</sup>, water retention, and restoration of extracellular fluid volume.

# Hyponatremia

- If dilutional
- Restrict salt and water intake
- Diurese.
- Hypovolemic hyponatremia.
- Hyperglycemia as cause
- Elevated serum osmolality
- Correct blood sugar.

# Hypovolemic hyponatremia

- If secondary to increased ADH
- Serum osmolality low (normally, 275-295mOsm/kg)
- Restrict water intake
- Treat underlying cause
- In chronic cases, demeclocyline may be administered.
- Na<sup>+</sup> replacement of should not be >0.5mEq/L/hr.
- Central pontine myelonlysis may cause a "locked-in" syndrome.

# Hypervolemic hypernatremia

- Excessive Na<sup>+</sup> administration
- Mineralicorticoid excess.

# Hypervolemic hypernatremia

- Urine osmolality <300mOsm/kg
- Compatible with diabetes insipidus
- <u>Vasopressin administration will correct central</u> <u>diabetes inspidus, not nephrogenic diabetes</u> <u>insipidus</u>.
- Nephrogenic diabetes insipidus is treated with Sodium restriction and thiazide diuresis.
- Urine osmolality >600mOsm/kg indicates extrarenal water loss.

# Hypokalemia

- Presents with weakness, muscle cramps.
- May see U waves on EKG.
- AV block and ventricular ectopy may also be noted.
- Urinary Potassium >30mEq/L indicates renal losses.
- May also be Magnesium deficient.

# Hypokalemia

- If hypertensive, examine for:
- Hyperaldosteronism
- Cushing's syndrome
- Licorice ingestion
- If normotensive, blood pH<7.4
- Suggests renal tubular acidosis.
- If hyperglycemic, diabetic ketoacidosis
- If normotensive, blood pH>7.4
- Suggests diuretics or vomiting as cause.
- Monitor with lead II if replacement >20mEq/L/hr.

# Hyperkalemia

- May see small bowel ulcers.
- EKG shows peaked T waves
- Increased PR interval
- Widened QRS complex
- Progresses to sine wave pattern and cardiac arrest.
- Magnesium levels may also be low.

# Hyperkalemia

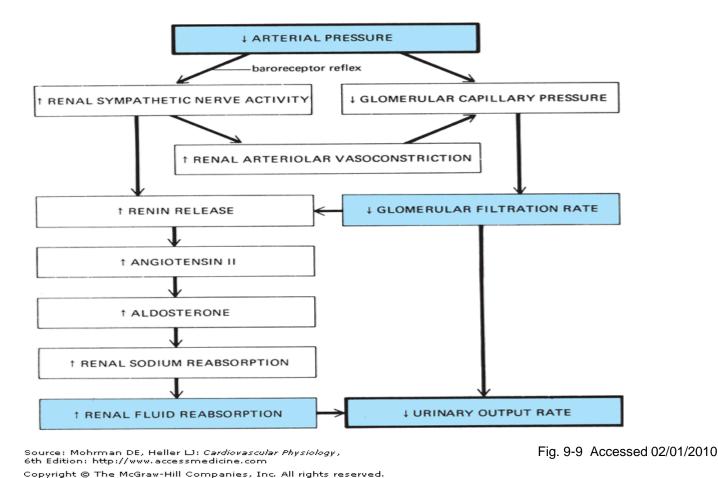
- If GFR low, suggests renal failure as major contributory cause.
- If GFR normal, hypoaldosteronism.
- Associated with use of β-blockers, digoxin.
- May see with low insulin levels as well as in acidosis.
- If hypomagnesemia, correct.
- Hyperkalemia may spontaneously correct.

# Hyperkalemia

- Calcium gluconate is administered as acute treatment.
- Acidosis is corrected with bicarbonate.
- The use of insulin is controversial.
- Treat with Kayexelate enema (Potassium binding resin)
- And diurese (or dialyze) as necessary.

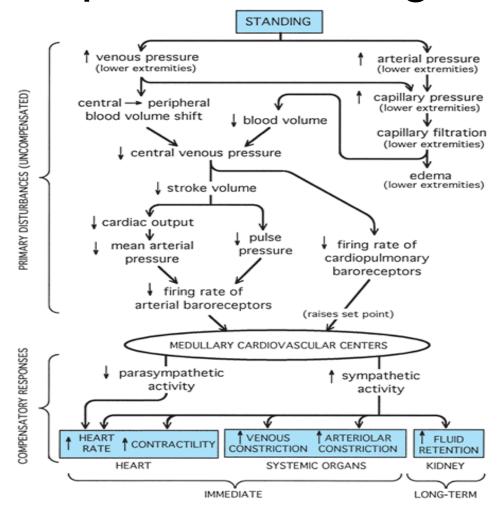
# ADH secretion

- <u>Diabetes insipidus</u>
- Presents with polyuria and polydypsia
- Serum Na<sup>+</sup> and osmolality increased
- Dilute urine
- ADH deficiency (central).
- Kidney unable to properly absorb water.
- Causes:
- Head trauma
- Tumors (principally craniopharyngioma)
- Meningitis


#### ADH secretion

- Syndrome of inappropriate ADH secretion.
- Excessive resorption of free water.
- Small cell carcinoma of the lung a common ectopic source of ADH production.
- Decreased Na<sup>+</sup>
- Symptomatic when Na<sup>+</sup> approaches 130
- Cerebral edema.

# Total body water


- Total body water is 60% of body weight in men, 50% in women.
- Intracellular fluid is 2/3 of total body water
- Interstitial fluid is 1/4 of total body water
- Plasma is 1/12 of total body water
- Normal saline to increase intravascular volume
- Half-normal saline leads to water transfer from the extracellular fluid to intracellular space to equalize osmotic pressures in both compartments

#### Homeostatic mechanism



Marked changes in fluid intake rate have rather minor influences on the arterial pressure of a normal individual.

# Cardiovascular changes involved in postural change



Source: Mohrman DE, Heller ⊔: *Cardiovascular Physiology*, 6th Edition: http://www.accessmedicine.com

Fig. 10-3 Accessed 02/01/2010

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

# Cardiovascular changes during

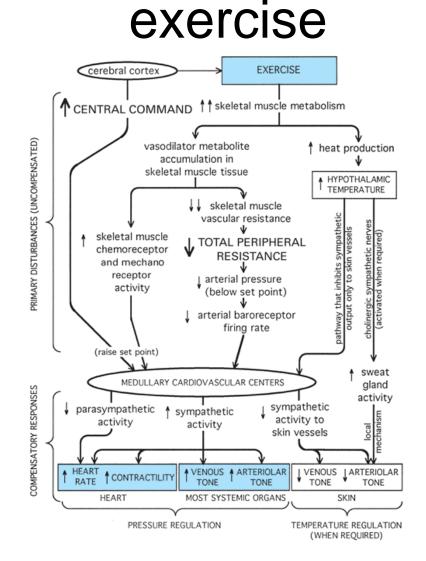
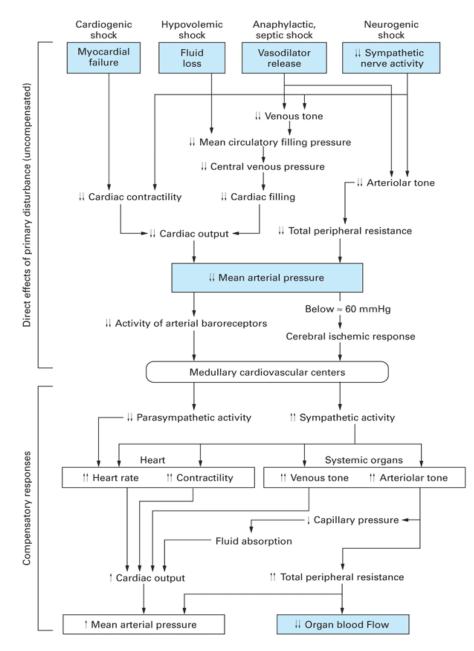
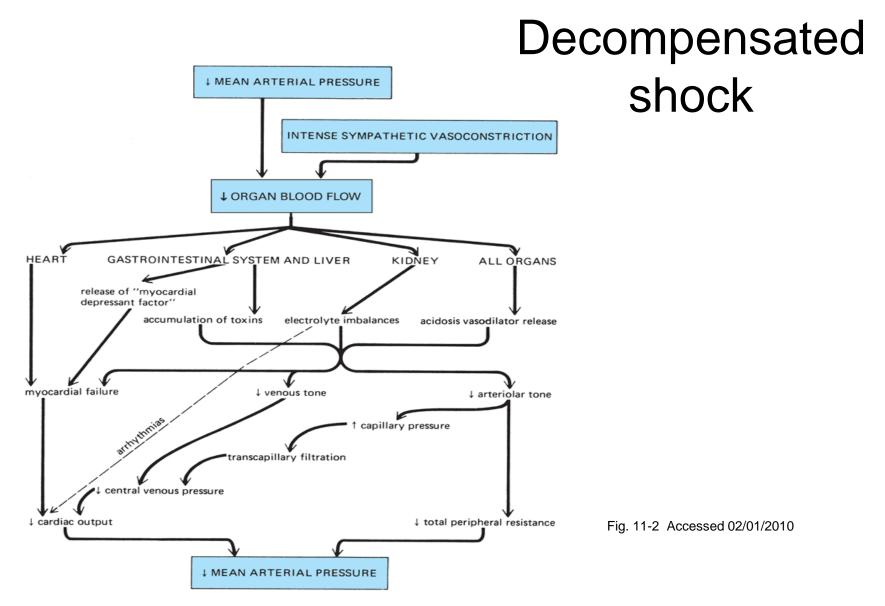




Fig. 10-5 Accessed 02/01/2010

Source: Mohrman DE, Heller □: Cardiovascular Physiology, 6th Edition: http://www.accessmedicine.com

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.




Cardiovascular alterations in shock

Fig. 11-1 Accessed 02/01/2010

Source: Mohrman DE, Heller ⊔: *Cardiovascular Physiology*, 6th Edition: http://www.accessmedicine.com

Copyright @ The McGraw-Hill Companies, Inc. All rights reserved.



Source: Mohrman DE, Heller ⊔: *Cardiovascular Physiology*, 6th Edition: http://www.accessmedicine.com

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

#### Renal tubular acidosis

- Renal tubular acidosis 1 (distal)
- Inability to secrete H<sup>+</sup> at the distal tubule
- No new  $HCO_3^-$  can be generated.
- Unable to lower urine pH below 6.0
- Na<sup>+</sup>, K<sup>+</sup>, Ca<sup>2+</sup>, PO<sub>4</sub><sup>3-</sup>, SO<sub>4</sub><sup>2-</sup> loss
- Stones comon
- Osteomalacia common

### Renal tubular acidosis

- Renal tubular acidosis 2 (proximal)
- Impaired resorption of  $HCO_3^-$  in the proximal tubule.
- Na+, K+ lost
- No stones
- Renal tubular acidosis 3
- Combination of types 1 and 2

#### Renal tubular acidosis

- Renal tubular acidosis 4
- Decreased Na+ absorption as well as decreased H+ and K+ secretion in distal tubule
- Hypoaldosteronism

## **Renal function**

- Specific gravity of first morning urine specimen best estimate of renal function.
- <u>Concentrating ability is first function lost.</u>
- Estimated GFR calculations are not accurate if GFR >60 ml/min or <25ml/min.</li>
- Are useful to determine which patients require GFR determinations.
- Estimated GFR in a patient with stable creatinine: [(140 –age) x lean body weight in kg] / (Serum creatinine x 72).

### **Renal function**

 <u>Elevated Cystatin C identifies a preclinical state</u> of kidney dysfunction that is not detected with serum creatinine or estimated glomerular filtration rate.

## **Renal function**

- Chronic kidney disease is progressive.
- Renal failure shortens life.
- Life expectancy on dialysis varies from 10 years for those <30 years old to 2 years for those >45 years old.
- ACE inhibitors slow progression of kidney disease in both diabetic and non-diabetic patients.
- ACE plus angiotensin receptor blocker (ARB) may be optimal regimen.
- If no control with ACE plus ARB plus thiazide, screen for primary hyperaldsteronism.
- Avoid Cox-2 inhibitors, dihydropyridones.

## Sodium

- Dehydration is suggested by elevated Na<sup>+</sup>, urea Nitrogen (BUN), and relatively normal creatinine.
- Na<sup>+</sup> >150 suggests hypothalamic abnormality.
- Na<sup>+</sup> levels of 135 suggest diuretic use
- Normovolemic
- If dilutional (hypervolemic), responds to water restriction.
- Hyperglycemia is often the cause of hypovolemic hyponatremia (elevated serum osmolality noted).

#### Low sodium

- Na<sup>+</sup> <120 suggests inappropriate ADH secretion.
- Serum osmolality will be low.
- Causes:
- Ectopic ADH production
- Alcohol abuse
- Carbamazepine
- Valproic acid
- Li+
- Li<sup>+</sup> uncouples receptor for vasopressin from Gprotein, producing a nephrogenic diabetes insipidus.

#### Low sodium

- Responds to sodium restriction and thiazide diuresis.
- Responds to water restriction.
- Central pontine myelinolysis is a complication of too rapid an administration of Na<sup>+</sup> (>0.5mEq/L/hr).

## Osmolality

Calculated plasma osmolality:
 2xNa<sup>+</sup> + Glucose/18 + BUN/2.8 + alcohol/4.6

Erroneously low if mannitol, sorbitol, ethylene glycol, methyl alcohol, isopropyl alcohol, excess lactate or ketoacids present

# Osmolality

- In the normal patient, urine specific gravity varies directly with osmolality.
- This correlation is lost in the presence of glycosuria.
- A specific gravity of 1.010 is compatible with a urine osmolality of at least 350 mOsm/kg.
- This is the specific gravity of a plasma filtrate.
- Urine osmolality >600mOsm/kg indicates extrarenal water loss.

#### Potassium

- K<sup>+</sup> <3.5 associated with cardiac arrhythmia.
- Usually reflects diuretic use.
- Monitor with lead II if replacement >20mEq/L/hr.
- Low K<sup>+</sup> in the absence of diuretic use and in the presence of normal glomerular filtration rate suggests hyperaldosteronism or Cushing's syndrome.
- May also be hypertensive.
- Urinary K<sup>+</sup> >30mEq/L indicates renal losses.
- May also be Magnesium deficient.

#### Potassium

- If K<sup>+</sup> is low and the patient is normotensive, a blood pH<7.4 suggests renal tubular acidosis.</li>
- If hyperglycemic, diabetic ketoacidosis
- If K<sup>+</sup> is low and the patient is normotensive, a blood pH>7.4 suggests diuretics or vomiting as cause.
- Elevated K<sup>+</sup> is seen in renal failure or patients on ACE inhibitors and spironolactone.
- Elevated K<sup>+</sup>, LDH, and PO<sub>4</sub><sup>2-</sup> (reported as phosphorous) suggest hemolyzed specimen used for testing.
- A change of pH by 0.10 alters K<sup>+</sup> levels by 0.5meq/L.

## Chloride, Bicarbonate, Phosphate

- Cl<sup>-</sup> levels low in chronic vomiting.
- HCO<sub>3</sub><sup>-</sup> levels low in metabolic acidosis.
- HCO<sub>3</sub><sup>-</sup> levels high in respiratory acidosis associated with chronic lung disease
- OR in metabolic alkalosis secondary to diuretic use.
- PO<sub>4</sub><sup>2-</sup> levels (reported as phosphorous) are elevated in renal disease, myeloma, sarcoid.

## Chloride, Bicarbonate, Phosphate

- <u>Chloride/phosphorous ratio >30 in the fasting patient</u> suggests hyperparathyroid disease.
- PTH decreases renal resorption of bicarbonate, increasing renal resorption of chloride, and phosphorus.

## Creatinine

- Elevated creatinine is an indicator of renal impairment in patients with normal muscle mass.
- Creatinine is the end product of creatine metabolism
- Trimethoprim and cimetidine interfere with secretion of creatinine.
- Creatinine supplements are also associated with elevated levels of serum creatinine in the absence of renal impairment.

## Creatinine

- Creatinine is filtered by the glomerulus and is not absorbed in the tubules.
- Timed creatinine clearance is a good estimate of renal function though with somewhat lower accuracy in the elderly.

## Urea Nitrogen

- Urea, measured as Nitrogen, may be elevated in renal failure, gastrointestinal hemorrhage, or dehydration.
- The test is performed on serum but is reported as blood urea Nitrogen (BUN)
- Urea production removes ammonia generated by amino acid, pyrimidine, and purine catabolism in liver.
- Filtered by glomerulus and reabsorbed in proximal tubules when water is resorbed

## Urea Nitrogen

- In the absence of acute renal failure, a BUN/creatinine ratio >20:1 suggests pre-renal disease.
- Hypovolemia
- Cardiac or liver failure
- Hemolysis or hemorrhage
- A normal ratio does not exclude acute tubular necrosis.

## Urea Nitrogen

- A ratio <5:1 suggests intra-renal disease.
- Ischemia
- Nephrotoxic agents such as aminoglycosides
- Radiocontrast materials
- Myoglobin deposition
- Oxalate deposition (ethylene glycol ingestion)
- Low BUN in patient with renal failure is harbinger of hepato-renal syndrome.

# Uric acid

- Completely filtered at the glomerulus.
- Accumulates in renal interstitium
- From which it is excreted as water is lost.
- No tubular reabsorption of uric acid.
- Elevated in patients with
- Gout
- Renal impairment
- Reflecting impaired clearance
- Malignancy
- Reflecting both production and impaired clearance

## Uric acid

- Uric acid precipitation in tissue reflects saturation and is pH and temperature dependent.
- Alkalinizing the urine may accelerate excretion.