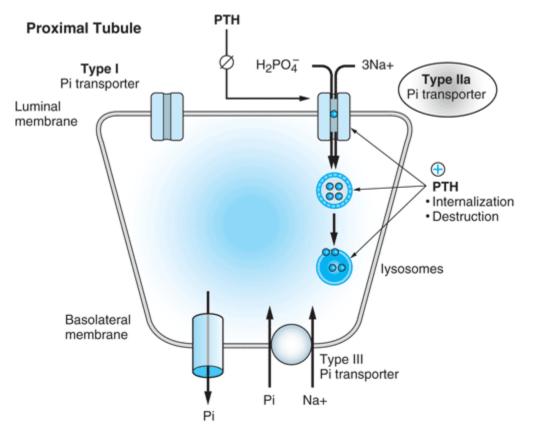
ENDOCRINOLOGY

PARATHYROID

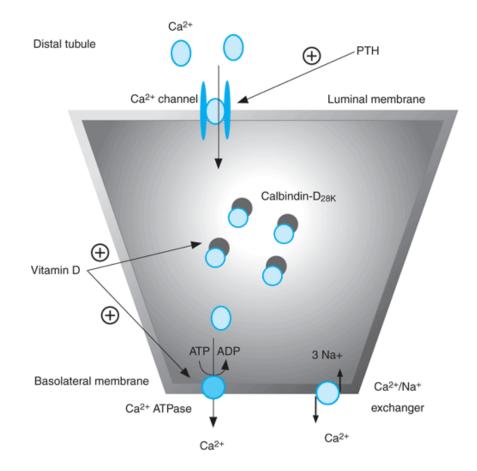
Kenneth Alonso, MD, FACP


Anatomy

- <u>Usually four glands</u>, one each at the upper and lower poles of the right and left lobes of the thyroid gland.
- Solid sheets of chief cells through early childhood. Stromal fat increases through age 25, and then diminishes.
- <u>Chief cells</u> are polygonal, with round nuclei, and pink cytoplasm.
- May take on water-clear appearance due to glycogen in the cytoplasm.
- Secrete parathyroid hormone (PTH)
- Clusters of mitochondria rich, acidophilic, <u>oxyphil</u> cells are found throughout gland.

Parathyroid hormone

- PTH is G-protein coupled.
- <u>Regulates calcium homeostasis</u>
- Decreased levels of free (ionized) calcium (iCa²⁺) stimulate the synthesis and secretion of PTH.
- Elevated iCa²⁺ as feedback mechanism.
- PTH increases conversion of vitamin D to its active form.
- PTH increases calcium absorption in the GI tract.
- PTH increases renal tubular absorption of calcium (distal tubule).
- PTH increases urinary phosphate excretion (proximal tubule).


PTH and the proximal tubule

Source: Molina PE: *Endocrine Physiology*, 2nd Edition: http://www.accessmedicine.com Fig. 5-3 Accessed 02/01/2010

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

PTH and the distal tubule

Interstitial space

Fig. 5-4 Accessed 02/01/2010

Source: Molina PE: *Endocrine Physiology*, 2nd Edition: http://www.accessmedicine.com

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

Hyperparathyrodism

- Primary
- Autonomous overproduction of parathyroid hormone (PTH), usually resulting from an adenoma or hyperplasia of parathyroid tissue
- <u>Secondary</u>
- Compensatory hypersecretion of PTH in response to prolonged hypocalcemia, most commonly from chronic renal failure
- <u>Tertiary</u>
- Persistent hypersecretion of PTH even after the cause of prolonged hypocalcemia is corrected, for example after renal transplant

Asymptomatic hypercalcemia

- An elevated serum calcium level is often an unsuspected finding .
- <u>High calcium levels probably reflect chronic vitamin</u>
 <u>D ingestion</u>. (PTH is not elevated.)
- If that is excluded, a work-up for parathyroid disease is necessary.
- Chloride/phosphorous ratio >30 in the fasting patient suggests parathyroid disease.
- Other causes of hypercalcemia include Lithium use, sarcoidosis, as well as Paget's disease of bone.

Symptomatic hypercalcemia

- <u>Symptomatic hypercalcemia is likely a result of</u> <u>malignancy, not parathyroid disease.</u>
- PTH will be low or normal if malignancy.
- (Parathyroid hormone related peptide may be produced by malignancy.)
- QT interval is shortened.

Symptomatic hypercalcemia

- Serum calcium >11 mg/dl requires therapy whether the patient is symptomatic or not as 20-40% will become symptomatic in a period of years.
- Calcium is toxic to renal tubules, blocks ADH activity, and leads to vasoconstriction and fall in GFR (which leads to increased calcium resorption).
- <u>Serum Calcium >12mg/dl is a medical emergency.</u>

Raised [PTH]	Decreased [PTH]
Hyperparathyroidism	Hypercalcemia of malignancy*
Primary (adenoma > hyperplasia)*	Vitamin D toxicity
Secondary [†]	Immobilization
Tertiary [†]	Thiazide diuretics
Familial hypocalciuric hypercalcemia	Granulomatous disease
	(sarcoidosis)

Table 24-5 Causes of Hypercalcemia

[PTH], Parathyroid hormone concentration.

*Primary hyperparathyroidism is the most common cause of hypercalcemia overall. Malignancy is the most common cause of *symptomatic* hypercalcemia. Primary hyperparathyroidism and malignancy account for nearly 90% of cases of hypercalcemia.

[†]Secondary and tertiary hyperparathyroidism are most commonly associated with progressive renal failure.

Symptomatic hypercalcemia treatment

- Aggressive saline hydration and diuresis.
- IV biphosphonate administration is the medical treatment of choice as these pyrophosphate analogues interfere with osteoclast function and promote apoptosis.
- Corticosteroids may be beneficial in patients whose tumors respond to steroids (breast, lymphoma, leukemia, myeloma)
- Calcitonin acts rapidly; tachyphylaxis develops rapidly, however.
- Mithramycin maximum effect at 48 hours.

PTH and bone

- PTH binds to PTH Receptor 1 in osteoblasts and stimulates the expression of receptor activator of nuclear factor-β ligand [RANKL] on the cell surface.
- RANKL binds to RANK, a cell surface protein on osteoclast precursors.
- Binding of RANKL to RANK activates osteoclast gene transcription and the differentiation into a mature osteoclast, which is characterized by the ruffled membrane under which bone resorption occurs.

PTH and bone

- PTH decreases osteoblast release of osteoprotegerin.
- Osteoprotegerin is a secreted protein that acts as a decoy, binding to RANKL and preventing the binding of RANKL to RANK, with a resulting decrease in the differentiation of precursor cells into osteoclasts and in bone resorption.
- Production of osteoprotegerin is increased by estrogen and decreased by glucocorticoids.

PTH and bone

- Osteoclasts attach to the bone surface .
- Hydrogen ions generated by carbonic anhydrase II are delivered across the plasma membrane by H⁺-ATPases recruited into the cell's ruffled membrane.
- The acidification of this isolated extracellular microenvironment to a pH of about 4 favors the dissolving of hydroxyapatite and the action of the lysosomal proteases to dissolve bone mineral.
- Ca²⁺ is transported by endocytosis by the osteoclast and released at the cell's antiresorptive surface, providing ionized Ca²⁺ into the circulation.

- 75% women
- Age 40-50 years
- 80% of cases of primary hyperparathyroidism are adenomas.
- Monoclonal.
- Up to 30% of adenomas have bi-allelic mutations in MEN1 gene
- Bone pain, urinary stones, peptic ulcer disease, psychiatric symptoms
- <u>Manifests with three interrelated skeletal</u>
 <u>abnormalities</u>

Parathyroid excess

- (1) Osteoporosis
- Increased osteoclast activity in hyperparathyroidism affects cortical bone (subperiosteal and endosteal surfaces) more severely than medullary bone.
- In medullary bone, osteoclasts tunnel into and dissect centrally along the length of the trabeculae, creating the appearance of railroad tracks (dissecting osteitis).
- The marrow spaces around the affected surfaces are replaced by fibrovascular tissue.
- Bone pain secondary to microfractures
- Radiolucent cyst formation (dental x-rays when often first seen).

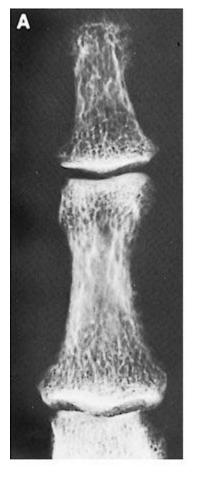
Parathyroid excess

- (2) Brown tumors
- Bone loss predisposes to microfractures and secondary hemorrhages that elicit an influx of macrophages and an ingrowth of reparative fibrous tissue, creating a mass of reactive tissue.
- The brown color is the result of the vascularity, hemorrhage, and hemosiderin deposition
- May undergo cystic degeneration
- (3) Osteitis fibrosa cystica (von Recklinhausen disease of bone)
- Increased osteoclast activity, peritrabecular fibrosis, and cystic brown tumors

Parathyroid excess

- PTH-induced hypercalcemia favors formation of urinary tract stones (nephrolithiasis) as well as calcification of the renal interstitium and tubules (nephrocalcinosis).
- 20% of newly diagnosed patients, with attendant pain and obstructive uropathy.
- Metastatic calcification secondary to hypercalcemia may also be seen in other sites, including the stomach, lungs, myocardium, and blood vessels.
- Familial hypocalciuric hypercalcemia
- Autosomal dominant
- CASR (calcium-sensing receptor) gene lost

- Chronic renal insufficiency and abnormalities in renal function lead to polyuria and secondary polydipsia.
- Gastrointestinal disturbances, including constipation, nausea, peptic ulcers, pancreatitis, and gallstones.
- Central nervous system alterations, including depression, lethargy, and eventually seizures.
- Neuromuscular abnormalities, including weakness and fatigue.
- Cardiac manifestations, including aortic or mitral valve calcifications (or both)


- In <u>secondary parathyroidism</u>, glands are hyperplastic.
- Chronic renal insufficiency is associated with decreased phosphate excretion, which in turn results in hyperphosphatemia.
- The elevated serum phosphate levels directly depress serum calcium levels and stimulate parathyroid gland activity.

- The loss of renal substance reduces the availability of α-1-hydroxylase necessary for the synthesis of the active form of vitamin D
- In turn reduces intestinal absorption of calcium
- Diminished suppressive effect on parathyroid growth and PTH secretion
- Bone changes mild and reversible (renal osteodystrophy)
- Calciphylaxis may occur (ischemic damage to skin and other organs as a result of vascular damage)
- <u>Tertiary hyperparathyroidism</u> is autonomous function

- inv11 leads to relocation of cyclin D1 gene to 5'flanking region of the PTH gene and overexpression of cyclin D1 proteins, forcing the cells to proliferate.
- Abnormality noted in up to 20% of adenomas.
- Cyclin D1 overexpression is also found in another 40% of adenomas.
- Parathyroid malignancy diagnosed if metastases
 present.

- Three familial syndromes identified
- MEN1 mutation associated with adenoma and hyperplasia (MEN1 syndrome)
- RET mutation seen in hyperplasia (MEN2A syndrome)
- CSAR (3q) mutation noted in familial hypocalciuric hypercalcemia.

Demineralization in hyperparathyroidism

(Both films courtesy of Dr. Harry Genant.)

Source: Gardner DG, Shoback D: Greenspan's Basic and Clinical Endocrinology, 8th Edition: http://www.accessmedicine.com

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

Fig. 9-15 Accessed 02/01/2010

Source: Gardner DG, Shoback D: Greenspan's Basic and Clinical Endocrinology, 8th Edition: http://www.accessmedicine.com

Copyright @ The McGraw-Hill Companies, Inc. All rights reserved.

Osteoporosis

- Prevalence in European women ranges from 15% in the sixth decade to 40% in the eighth decade
- The prevalence in the 9th decade of life is 70%.
- For African women more than 50 years old, the prevalence of osteoporosis is 12%.
- BMI <25 is the single best finding for detecting women with osteoporosis (positive likelihood ratio, LR+, 4.5).

Osteoporosis

- Preferential involvement of the phalanges, vertebrae and proximal femur.
- Kyphosis is specific for osteoporosis but has low sensitivity.
- Screening questionnaires offer little additional information.
- Historical height loss (> 4cm) in an osteoporotic woman is compatible with vertebral fracture (LR+ 4.6).

Osteoporosis

- DXA only test with clinical correlation.
- Screen white, Asian women if >65yo.
- Medicare permits repeat every 2 years.
- There are no data to suggest screening [and intervention to correct bone density] affects fracture rate.
- Fractures rare in men and African women.
- Screen earlier if postmenopausal AND with nutritional disorder OR steroid use for more than 60 days.

Parathyroid hyperplasia

- All four glands involved
- Occasionally one may be enlarged with the others spared (mimic adenoma)
- <u>Histopathology</u>
- The most common pattern seen is that of chief cell hyperplasia
- Diffuse or multinodular pattern.
- Less commonly, the constituent cells contain abundant water-clear cells ("water-clear cell hyperplasia").

Parathyroid hyperplasia

- In many instances there are islands of oxyphils, and poorly developed, delicate fibrous strands may envelop the nodules.
- Stromal fat inconspicuous.

Parathyroid adenoma

- Almost always solitary
- May lie in close proximity to the thyroid gland or in an ectopic site such as the mediastinum.
- Well-circumscribed, soft, tan to reddish-brown nodule invested by a delicate capsule.
- The glands outside the adenoma are usually normal in size or somewhat shrunken because of feedback inhibition by elevated levels of serum calcium.

Parathyroid adenoma

- <u>Histopathology</u>
- Composed of uniform, polygonal chief cells with small, centrally placed nuclei. At least a few nests of larger oxyphil cells are present as well.
- A rim of compressed, non-neoplastic parathyroid tissue, generally separated by a fibrous capsule, is often visible at the edge of the adenoma.
- Mitotic figures are rare.
- Stromal fat inconspicuous.

Parathyroid carcinoma

- Solitary gray-white mass
- The cells are usually uniform and are arrayed in nodular or trabecular patterns.
- The mass is usually enclosed by a dense, fibrous capsule.
- Invasion of surrounding tissue or metastasis is the only reliable diagnostic criterion.
- One third recur after removal
- One third metastasize

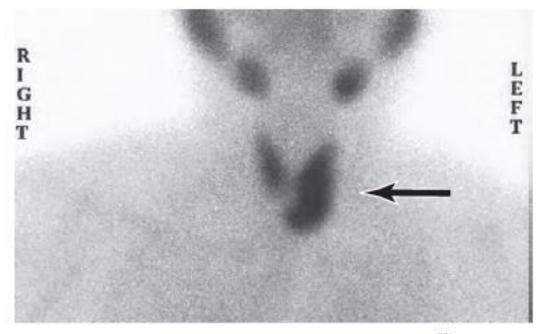
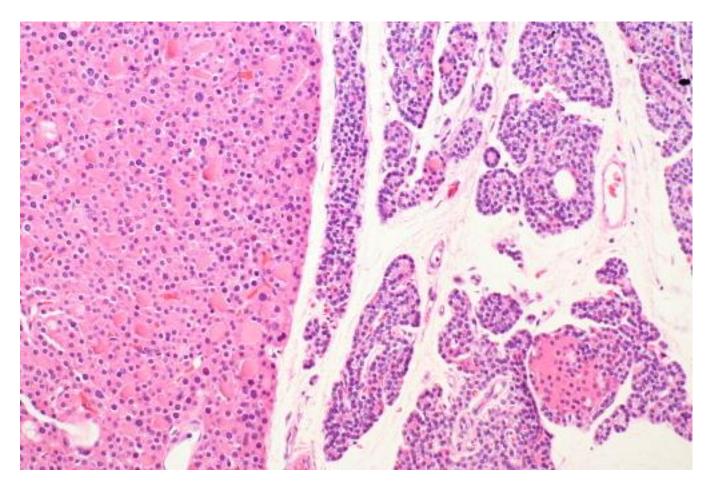



Figure 24-24 Parathyroid adenoma imaging. Technetium-⁵⁹m-sestamibi radionuclide scan demonstrates an area of increased uptake corresponding to the left inferior parathyroid gland (*arrow*), which contained a parathyroid adenoma. Preoperative scintigraphy is useful in localizing and distinguishing adenomas from parathyroid hyperplasia, where more than one gland would demonstrate increased uptake.

Parathryoid adenoma

Adjacent to this parathyroid adenoma on the right is a rim of normal parathyroid.

Surgical therapy

- Sample venous drainage or perform a ^{99m}Tc sestamibi scan to localize adenoma; minimize need to explore neck.
- 90% of cases may be treated surgically with gland excision without exploratory neck dissection to examine all glands.
- Ectopic glands reflect abnormal migration. Typically glands are symmetrically located.
- Else, as parathyroid gland arises from 3rd and 4th pharyngeal pouches, surgical exploration must involve neck and upper mediastinum.

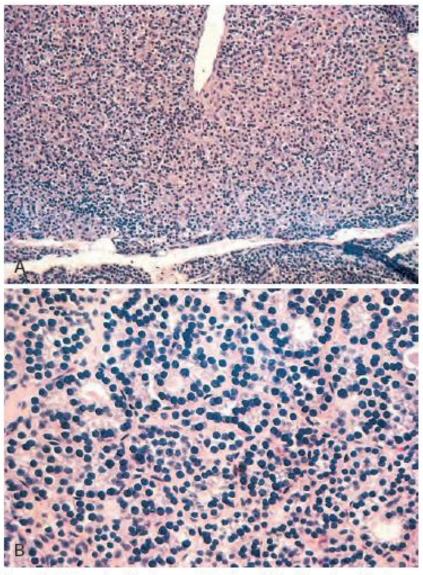


Figure 24-25 Parathyroid adenoma. **A**, Solitary chief cell parathyroid adenoma (low-power photomicrograph) revealing clear delineation from the residual gland below. **B**, High-power detail of a chief cell parathyroid adenoma. There is some slight variation in nuclear size but no anaplasia and some slight tendency to follicular formation.

Hypoparathyroidism

- <u>Acquired hypoparathyroidism is almost always an</u> inadvertent consequence of surgery.
- Autoimmune polyendocrine syndrome type I (APS1)
- Chronic cutaneous candidiasis and primary adrenal insufficiency
- Mutation in autoimmune regulator gene (AIRE).
- <u>Autosomal-dominant hypoparathyroidism</u>
- CASR gene gain of function mutation
- Heightened calcium sensing suppresses PTH, resulting in hypocalcemia and hypercalciuria.

Hypoparathyroidism

- Familial isolated hypoparathyroidism.
- Autosomal dominant form
- Mutation encoding PTH precursor peptide
- Impair processing to mature hormone.
- Autosomal recessive form
- Koss of function mutation in GCM2, essential for development of the parathyroid.
- <u>Congenital absence</u> of parathyroid glands can occur in conjunction with other malformations, such as thymic aplasia DiGeorge syndrome) and cardiovascular defects, or as a component of the 22q11 deletion syndrome

- Low calcium levels are associated with malabsorption syndrome.
- Ionized calcium is active form and is not routinely measured.
- Hypomagnesemia induces resistance to PTH and may lead to functional hypoparathyroidism.
- Renal disease may prevent vitamin D hydroxylation and, thus, intestinal absorption of calcium.
- Serum calcium and PTH are low. Serum phosphorous will be increased. Little urinary loss of calcium.
- QT interval prolonged on EKG

- Hallmark is tetany (neuromuscular irritability)
- May see perioral numbness, tingling of the fingers, and involuntary muscle spasms.
- Laryngospasm and seizures are possible
- Chvostek's sign (facial nerve contraction when cheek is tapped) and Trousseau's sign (carpopedal spasm following occlusion of the brachial artery for 3 minutes) are classic findings.
- Emotional instability, anxiety and depression, confusional states, hallucinations, and frank psychosis.

- Intracranial manifestations include calcifications of the basal ganglia, parkinsonian-like movement disorders, and increased intracranial pressure with resultant papilledema.
- Calcification of the lens and cataract formation.
- Prolonged QT interval
- Developmental dental abnormalities are highly characteristic of hypoparathyroidism
- Dental hypoplasia, failure of eruption, defective enamel and root formation, and abraded carious teeth.

- <u>Pseudohypoparathyroidism</u> is a failure in signalling via G-protein–coupled receptors.
- The disorder is shared across other endocrine tissues.
- PTH resistance is the most obvious clinical manifestation.
- Acute therapy of hypocalcemia involves IV administration of Calcium gluconate and both oral Calcium with vitamin D and Magnesium.