PANCREATIC CANCERS

Kenneth Alonso, MD, FACP

Pancreatic cysts

- Often incidental findings
- Result from anomalous development of ducts
- 77% of patients with Von Lindau-Hippel disease
- 10% of patients with polycystic disease
- BUT, 5-10% of pancreatic cysts are neoplastic

Serous cystadenoma

- Predominant pancreatic cyst
- 90% women
- mean age at presentation of 70 years
- Not connected to pancreatic ductal system
- Predominantly in the tail of the pancreas
- <u>Gross pathology</u>:
- Encapsulated
- Central scar and calcification
- Histopathology:
 - Glycogen rich cuboidal cells line cyst
- Surgical resection curative



Figure 19-8 Serous cystic neoplasm (serous cystadenoma). **A**, Cross-section through a serous cystic neoplasm. Only a thin rim of normal pancreatic parenchyma remains. The cysts are relatively small and contain clear, straw-colored fluid. **B**, The cysts are lined by cuboidal epithelium without atypia.

Mucinous cystic neoplasm

- 95% women
- Mean age of presentation 45 years old
- Not connected to pancreatic ductal system
- Predominantly in body and tail
- KRAS, TP53, RNF43 mutations
- Gross pathology:
- Encapsulated
- Calcification rare

Mucinous cystic neoplasm

- Histopathology:
- Lined by mucin producing columnar cells in an ovarian type stroma
- Stain for estrogen, progesterone, HCG
- High levels of CEA in cyst
- Do not recur after resection
- One-third of resected specimens contain invasive adenocarcinoma

Mucinous cystic neoplasm

There is an inner epithelial layer and an outer densely cellular "ovarian-like" stromal layer .The mucinproducing epithelium exhibits a spectrum of differentiation, ranging from histologically benign appearing columnar epithelium to severely atypical epithelium.

https://basicmedicalkey.com/mucinous-cystic-neoplasms-2/#Sec4 Accessed 01/20/2020

Solid pseudo-papillary neoplasm

- <u>90% women</u>
- Mean age at presentation 30 years
- Gross pathology:
- Not encapsulated
- No calcification
- Connected to pancreatic ductal system
- Found in the head of pancreas
- β-catenin /APC pathway altered
- Locally aggressive
- Resection curative

Pancreatic ductal adenocarcinoma

- Four subtypes
- <u>Stable</u>
- 20%
- \leq 50 structural variation events
- Widespread aneuploidy

Pancreatic ductal adenocarcinoma

- Locally rearranged
- 30%
- Focal event on one or two chromosomes
- Two subtypes
- Focal regions of gain/amplification
- ERBB2, MET, FGFR1, CDK6, PIK3R3 and PIK3CA
- Complex genomic rearrangements
- Broken-fusion-bridge
- Chromothripsis
 - TP53 mutations common

Pancreatic ductal adenocarcinoma

- <u>Scattered</u>
- 36%
- Non-random chromosomal damage and <200 structural variation events
- <u>Unstable</u>
- 14%
- >200 structural variation events
- 50% have BRCA or PALB mutations

- Main duct lesion presents as acute pancreatitis
- 2/3 occur in head of pancreas
- 70% in women
- 65-70 years of age
- Diffuse or segmental enlargement of pancreatic duct noted on imaging studies
- 70% of lesions arising in main duct are malignant (intestinal, pancreatobiliary, oncocytic types)
- Neoplasms may be multifocal

- <u>A branch duct lesion is asymptomatic</u>
- Identified incidentally on CT
- Multilocular, grape-like appearance
- Mixed main duct and branch lesions (multifocal) behave as main duct lesions
- Neoplasms may be multifocal

- Gross pathology:
- Not encapsulated
- Histopathology:
- Lack ovarian-type stroma
- High levels of CEA and amylase in cyst
- Gastric, intestinal, pancreatobiliary types
- GNAS, KRAS, TP53, SMAD4, RNF43 mutations
- 30% recur after resection

- Gastric type
- Most common type
- Usually found in uncinate process.
- Arise in a branched duct
- Papillae lined by epithelial cells resembling gastric foveolar cells
- Pyloric gland-like structures found at base of papillae.
- 30% malignant

- MUC5 and MUC6 consistently expressed.
- Invasive pattern is that of a tubular carcinoma.
- Prognosis comparable to that of intestinal type.
- CDKN2a gene hypermethylation correlates with clinical stage

- Intestinal type
- Arise in a main duct
- Show a villous growth
- Expresses MUC2, MUC5, but not MUC1
- Invasive pattern is that of a colloid carcinoma

- Pancreatobiliary type shows arborizing papillae.
- Arise in main duct
- Only expresses MUC1 and MUC5.
- 70% malignant
- Invasive pattern is that of a tubular carcinoma
- Poorer prognosis than intestinal type.
- Pancreatobiliary duct tumors <2cm in size may be followed rather than resected initially

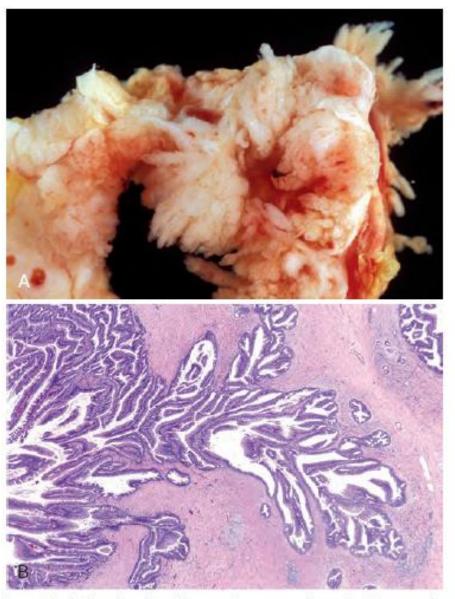
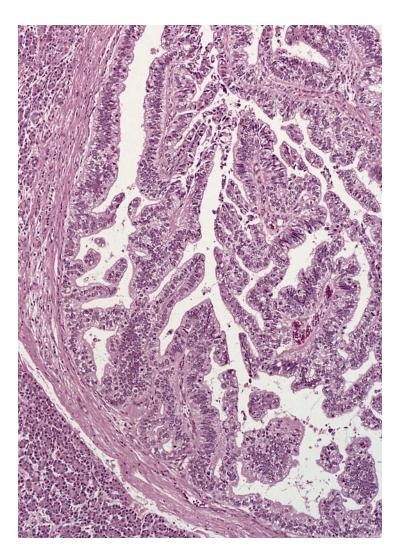
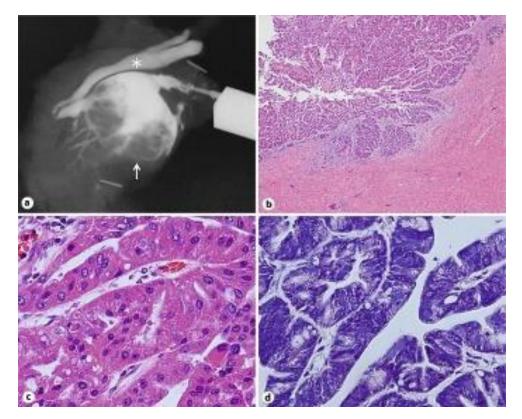



Figure 19-10 Intraductal papillary mucinous neoplasm. **A**, Cross-section through the head of the pancreas showing a prominent papillary neoplasm distending the main pancreatic duct. **B**, The neoplasm involves the main pancreatic duct *(left)* and extends down into the smaller ducts and ductules *(right)*.

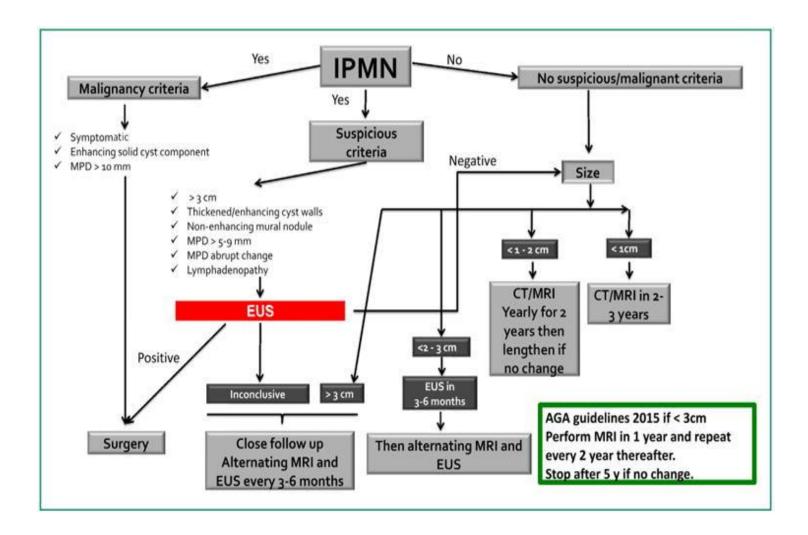
Intraductal papillary tumor

Cross section through the main pancreatic duct which is filled with epithelial papillary proliferations.


Fig. 4-33

Solcia, E, Capella, C, Kloppel, G., "Tumors of the Pancreas. Atlas of Tumor Pathology Third Series, Fascicle 20. Armed Forces Institute of Pathology. Washington, D.C. 1997.

Intraductal oncocytic papillary neoplasm


- Oncocytic type often forms large nodules in the main pancreatic duct.
- Arise in main duct
- Mean age 62 years
- <u>Histology</u>:
- Mucin filled cysts with nodular papillary projections
- Complex papillae with oncocytic lining
- Main cyst contains goblet cells.
- MUC1, MUC2, and MUC5AC expressed focally but inconsistently
- <u>No KRAS mutation</u>

IOPN

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3398090/figure/F4/ Accessed 01/20/2020

There is a localized cystic dilatation of the main pancreatic duct with luminal filling defects (arrow). The common bile duct is observed above the cystic lesion (asterisk). **b** A papillary mural nodule is recognized in the cyst with minimally invasive growth (HE stain, ×40). c The tumor cells have an abundant cytoplasm with eosinophilic granules. Nuclei are oval with increased chromatin and a large nucleolus by high-power magnification (HE stain, ×400). d PTAH stain demonstrates dense blue cytoplasmic granularity (x200).

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5546617/figure/F5/ Accessed 01/20/2020

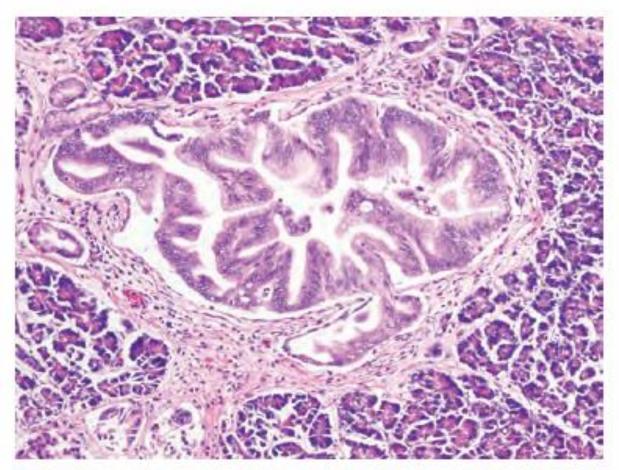
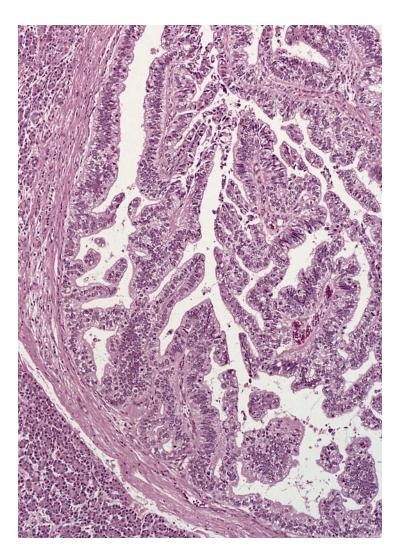
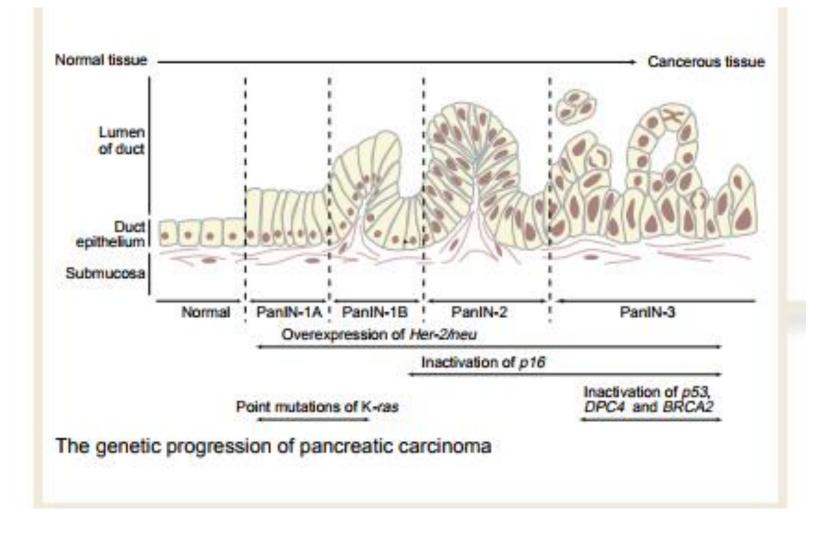
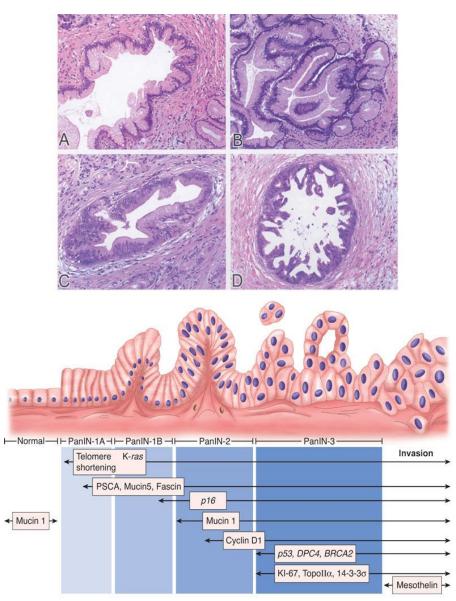



Figure 19-11 Pancreatic intraepithelial neoplasia grade 3 (PanIN-3) involving a small pancreatic duct.

Intraductal papillary tumor

Cross section through the main pancreatic duct which is filled with epithelial papillary proliferations.


Fig. 4-33


Solcia, E, Capella, C, Kloppel, G., "Tumors of the Pancreas. Atlas of Tumor Pathology Third Series, Fascicle 20. Armed Forces Institute of Pathology. Washington, D.C. 1997.

- Arise in Ductular epithelium
- <u>80% K-ras activated</u>
- <u>95% p16 deactivated (CDKN2A).</u>
- Mutation generally occurs in individuals from melanoma-prone families.
- <u>55% inactivated SMAD4 (18q21.2)</u>.
- Affects signal transduction from TGF-β family of cell surface receptors.
- <u>A late occurrence is inactivation of p53.</u>
- 75% of tumors

- BRCA2 mutation is a late occurrence and found in 10% of pancreatic cancers from Ashkenazi.
- <u>Accumulation of multiple mutations more important</u>
 <u>than temporal sequence</u>

- 40%–80% have activating mutations in GNAS
- More than 50% have inactivation of RNF43 (an antagonist of WNT signaling).
- The pancreatic adenocarcinoma genome is also characterized by diverse, large-scale chromosomal changes with frequent amplifications, deletions and rearrangements.
- Accumulation of multiple mutations more important than temporal sequence

Oncogenesis

(From Hruban RH, Takaori K, Klimstra DS, et al: An illustrated consensus on the classification of pancreatic intraepithelial neoplasia and intraductal papillary mucinous neoplasms. *Am J Surg Pathol* 28:977, 2004.)

Fig. 33-67 Accessed 02/01/2010

Source: Brunicardi FC, Andersen DK, Billiar TK, Dunn DL, Hunter JG, Matthews JB, Pollock RE: Schwartz's Principles of Surgery, 9th Edition: http://www.accessmedicine.com Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

Tanoreado Ader	loouromonta				
Gene	Chromosomal Region	Percentage of Carcinoma with Genetic Alteration	Gene Function		
Oncogenes					
KRAS	12p	90	Growth factor signal transducer		
AKT2	19q	10-20	Growth factor signal transducer		
MYB	6q	10	Transcription factor		
NCOA3/AIB1	20q	10	Chromatin regulator		
MAP2K4/MKK4	17p	5	Growth factor signal transducer		
Tumor Supprossor and DNA Repair Genes					
p16/CDKN2A	9p	95	Negative cell-cycle regulator		
TP53	17p	50-70	Response to DNA damage		
SMAD4	18q	55	TGFβ pathway		
GATA-6	18q	10	Transcription factor		
RB	13q	5	Negative cell-cycle regulator		
STK11	19p	5	Regulation of cellular metabolism		
ATM	11q	5	DNA damage response		
ARID1A	1p	4	Chromatin regulator		
TGFBR1	9q	2	TGFβ pathway		
TGFBR2	Зр	2	TGFβ pathway		

Table 19-3 Somatic Molecular Alterations in Invasive Pancreatic Adenocarcinoma

- Tobacco use and chronic pancreatitis predispose
- More frequent in Blacks.
- 60-80 years of age
- 60%, head; 15%, body; 5%, tail
- 5%, squamous carcinoma
- Often grow along nerves and invade retroperitoneum
- Very elevated CA 19-9 specific for pancreatic carcinoma.
- 10% have migratory thrombophlebitis
- Most common metastasis to pancreas is from renal cancer

Disorder	Gene	Increased Risk of Pancreatic Cancer (Fold)	Risk of Pancreatic Cancer by Age 70 (%)
Peutz-Jeghers syndrome	STK11	130	30-60
Hereditary pancreatitis	PRSS1, SPINK1	50-80	25-40
Familial atypical multiple-mole melanoma syndrome	CDKN2A	20-35	10-17
Strong family history (3 or more relatives with pancreatic cancer)	Unknown	14-32	8-16
Hereditary breast and ovarian cancer	Multiple, including BRCA1, BRCA2, PALP2, BRCA2	4-10	5
Hereditary non-polyposis colorectal cancer (HNPCC)	Multiple, including MLH1, MSH2 (2p21)	8-10	4

Table 19-4 Inherited Predisposition to Pancreatic Cancer

Histopathology

- Hard, stellate, gray-white, poorly defined masses
- The vast majority are <u>ductal adenocarcinomas</u> that recapitulate to some degree normal ductal epithelium by forming glands and secreting mucin.
- Less differentiated tumors have abortive tubular structures and cell clusters
- Two features are characteristic of pancreatic cancer:
- Highly invasive
- Elicits an intense host reaction in the form of dense fibrosis ("desmoplastic response")
- Perineural invasion is common

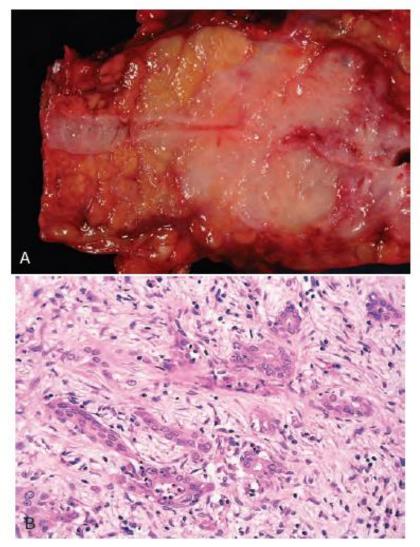
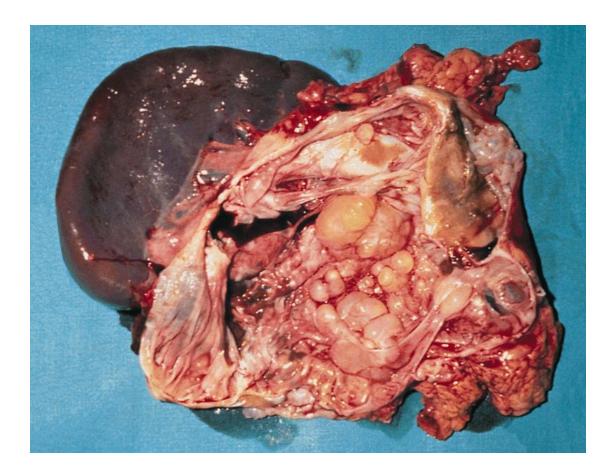
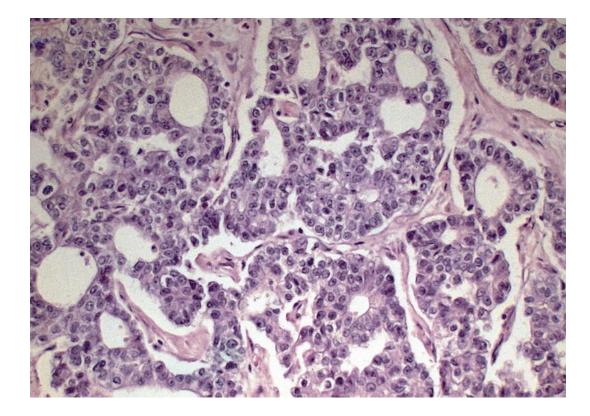



Figure 19-13 Carcinoma of the pancreas. **A**, A cross-section through the tail of the pancreas showing normal pancreatic parenchyma and a normal pancreatic duct *(left)*, an ill-defined mass in the pancreatic substance *(center)* with narrowing of the pancreatic duct, and dilatation of the pancreatic duct upstream *(right)* from the mass. **B**, Poorly formed glands are present in densely fibrotic stroma within the pancreatic substance; some inflammatory cells are also present.

Mucinous cyst adenocardinoma



Tumor from the tail of the pancreas with adjacent spleen. The cut surface shows conspicuous, irregular, solid protuberances projecting into cystic cavities.

Fig. 4-14

Solcia, E, Capella, C, Kloppel, G., "Tumors of the Pancreas. Atlas of Tumor Pathology Third Series, Fascicle 20. Armed Forces Institute of Pathology. Washington, D.C. 1997.

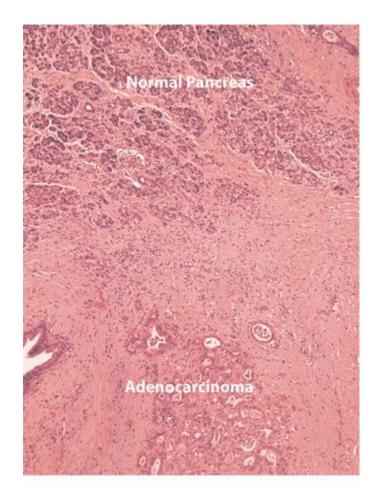
Acinar cell carcinoma

This tumor shows a pure acinar pattern, reminiscent of normal pancreatic acinar tissue.

Fig. 4-94B

Solcia, E, Capella, C, Kloppel, G., "Tumors of the Pancreas. Atlas of Tumor Pathology Third Series, Fascicle 20. Armed Forces Institute of Pathology. Washington, D.C. 1997.

Ductal adeoncarcinoma



Whipple resection specimen showing a ductal adenocarcinoma with invasion of the ampulla and the duodenal wall, obstructing the common bile duct as well as the pancreatic duct. Note the illdefined tumor demarcation.

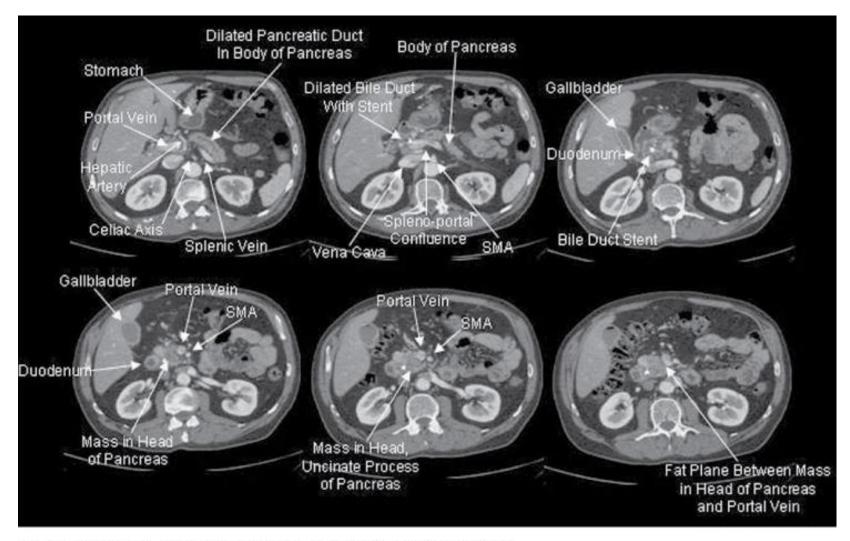
Fig. 4-43B

Solcia, E, Capella, C, Kloppel, G., "Tumors of the Pancreas. Atlas of Tumor Pathology Third Series, Fascicle 20. Armed Forces Institute of Pathology. Washington, D.C. 1997.

Ductular pancreatic adenocarcinoma

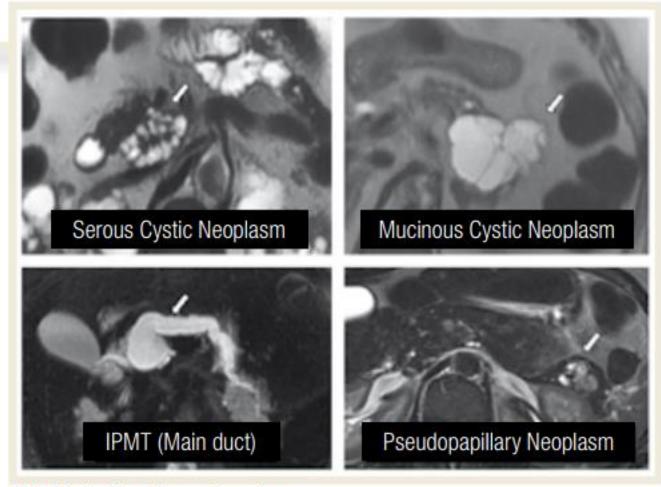
Photomicrograph of ductal adenocarcinoma of the pancreas with well-preserved islet cells and pancreatic architecture above and infiltrating tumor with poorly formed glandular structures below.

Fig. 15-1 Accessed 04/10/10


Source: Kantarjian HM, Wolff RA, Koller CA: MD Anderson Manual of Medical Oncology: http://www.accessmedicine.com

Copyright @ The McGraw-Hill Companies, Inc. All rights reserved.

Hypoechoic mass, deforming gland contour with common bile duct (CBD) and dilatation

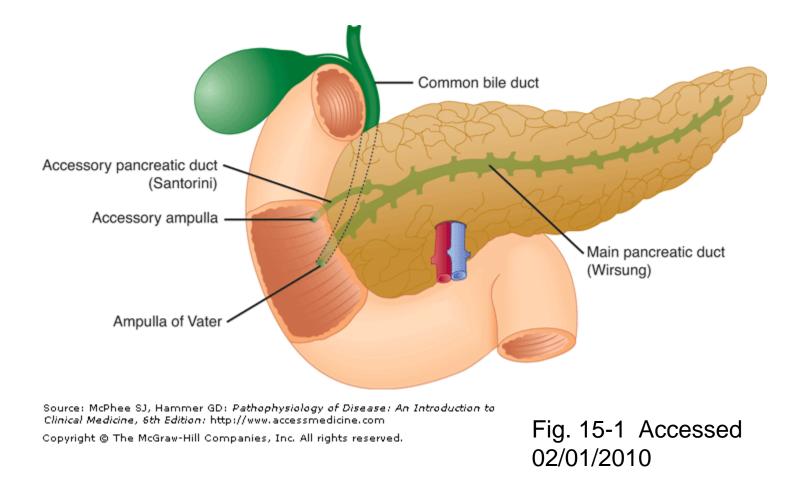

Hypoattenuation solid mass due to desmoplastic fibrotic component

Source: Brunicardi FC, Andersen DK, Billiar TR, Dunn DL, Hunter JG, Matthews JB, Pollock RE: Schwartz's Principles of Surgery, 9th Edition: http://www.accessmedicine.com

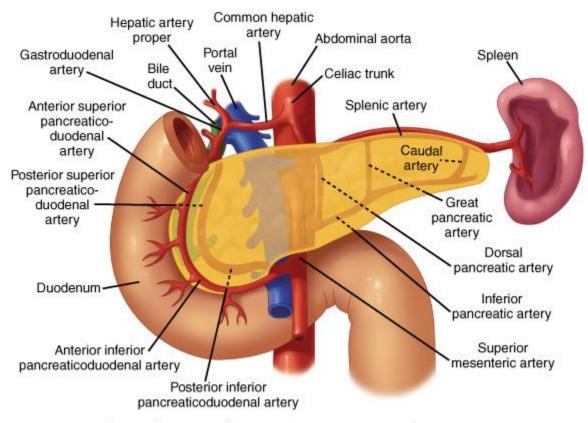
Fig. 33-68 Accessed 02/01/2010

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

IPMT, Intraductal papillary mucinous tumour.


- Dual contrast, helical CT (3D reconstruction).
- <u>Arterial phase</u>
- Permits assessment of tumor position to the celiac plexus and superior mesenteric artery (SMA).
- Venous phase
- Permits determination of the spatial relation of the tumor to the portal and splenic vein
- Permits identification of suspicious lymph nodes and distant metastases.

- 67% sensitive for lesions <1.5cm
- Nearly 100% sensitive for tumors >1.5cm.
- 95% positive predictive value in defining resectability if major vessel tumor encasement is present.
- Fine needle aspiration for diagnosing tumor with minimal risk.
- CA19-9 is not generally useful for diagnosis


- <u>MRI represents the imaging modality of choice in the</u> <u>characterization of cystic pancreatic neoplasms.</u>
- MRI and Magnetic resonance cholangiopancreatography (MRCP) are the most sensitive means for diagnosis of ductal adenocarcinoma
- Endoscopic ultrasound is comparable.
- Tumor and nodal staging.
- Detection of portal vein invasion.
- Evaluate periampullary lesions.

- Dual contrast helical CT or MRI with cholangiopancreatography (MRCP) is recommended to check for "<u>high-risk stigmata</u>":
- Enhanced solid component and main pancreatic duct [MPD] >10 mm
- for "worrisome features"
- Cyst >3 cm, thickened enhanced walls, nonenhanced mural nodules
- MPD size of 5–9 mm, abrupt change in the MPD caliber with distal pancreatic atrophy
- Lymphadenopathy

Anatomic relationships

Arterial supply to pancreas

Source: Brunicardi FC, Andersen DK, Billiar TR, Dunn DL, Hunter JG, Matthews JB, Pollock RE: Schwartz's Principles of Surgery, 9th Edition: http://www.accessmedicine.com

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

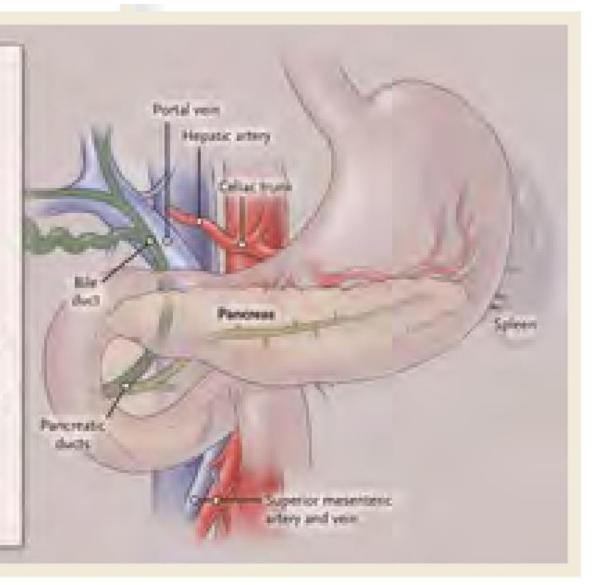
- Fewer than 10% have resectable disease at diagnosis.
- If infiltration of the SMA >180°, is unresectable
- Confined to pancreas without encasement of celiac plexus or SMA and with patent portal vein.
- Borderline lesions abut but are not encased nor involve the short segment of the celiac artery.
- Reconstruction possible if hepatic artery involved but celiac artery is free of tumor.
- 70% will have local-regional recurrence following complete resection.
- If metastases, no resection is suggested

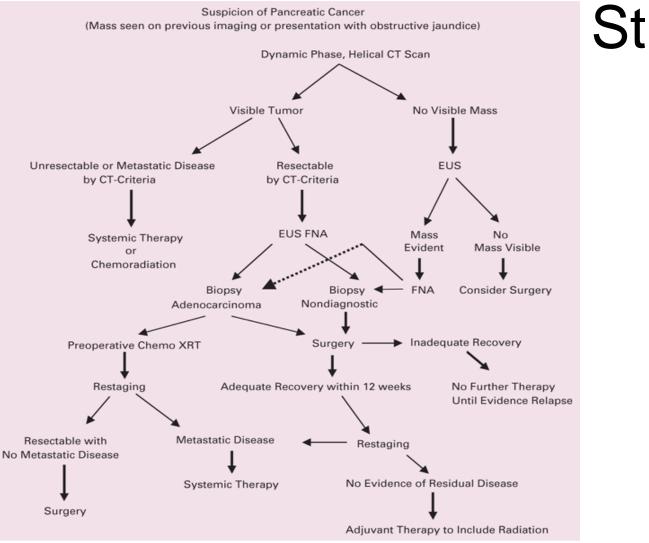
Unresectable

Distant metastates

Arterial encasement (celiac trunk, superior mesenteric artery, or hepatic artery)

Arterial involvement. (celiac trunk, superior mesenteric: artery, or hepatic artery)


Venous encasement (portal or superior mesenteric vein)


Venous involvement (portal or superior mesenteric vein)

Attached to other organs.

No arterial or venous involvement

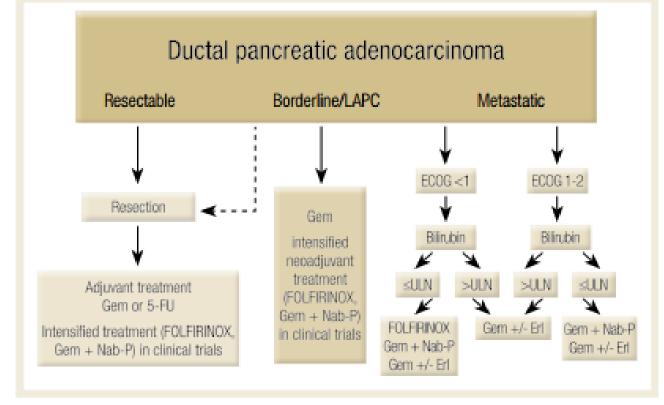
Resectable

Strategy

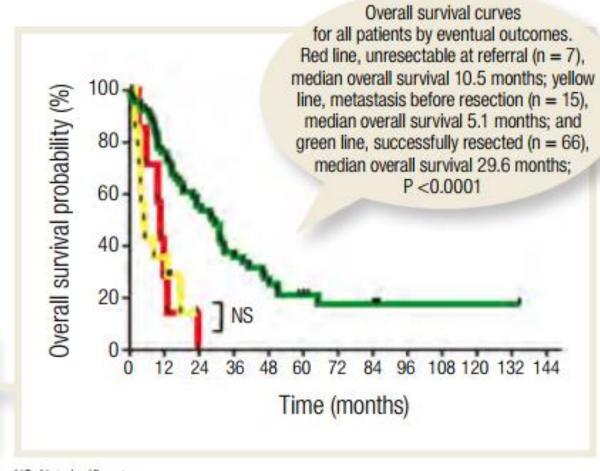
Fig. 15-4 Accessed 04.10/10

Source: Kantarjian HM, Wolff RA, Koller CA: MD Anderson Manual of Medical Oncology: http://www.accessmedicine.com

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.


Treatment strategy

- Surgery is the only curative option
- Goal is tumor free margin (R0).
- For tumors in the pancreatic head, duodenopancreatectomy with or without pylorus sparing (Whipple procedure) is used.
- For tumors in the pancreatic body, duodenopancreatectomy or subtotal left pancreatic resection is performed
- For tumors in the pancreatic tail, a left sided pancreatic resection is performed


- 5 year survival following pylorus sparing Whipple procedure and chemoradiation is 17.5%.
- Locally advanced disease, 5 year survival is 6.0%; metastatic disease, 1.2%.
- Metastatic disease is treated with:
- FOLFIRINOX (leucovorin, 5-fluorouracil, irinotecan, oxaliplatin)
- 30% respond (median survival, 11 months)
- However, is more toxic than gemcitabine regimens

- Gemcitabine with N-albumin-bound paclitaxel (Nabpaclitaxel)
- Tolerated by those >65 years of age and Karnofsky index of 70-80
- Gemcitabine with cisplatin for those with known BRCA1/2 or PALB2 mutations.
- Gemcitabine, capecitabine, or infusion 5FU for palliation (20% respond; median survival, 6 months).

- If erlotinib, a TKI, is added to gemcitabine, only effective if patient develops typical rash associated with TKI use
- Stereotactic radiotherapy may control pain in many patients
- May have to block celiac plexus for pain control.
- Metal stent placement via endoscopy to relieve jaundice.

ECOG, Eastern Cooperative Oncology Group; Erl, erlotinib; FOLFIRINOX, 5-FU, leucovorin, irinotecan and oxaliplatin; 5-FU, fluorouracil; GEM, gemcitabine; LAPC, locally advanced pancreatic cancer; Nab-P, nab-paclitaxel; ULN, upper limit of normal.

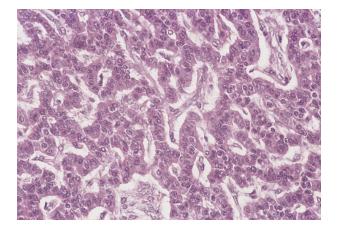
NS, Not significant.

Pancreatoblastoma

- Mean presentation is age 5
- APC gene mutated
- AFP elevated
- <u>Histology</u>
- Multiple lines of differentiation and the presence of squamous nests
- Associated with Beckwith-Wiedemann syndrome
- Associated with familial adenomatous polyposis

- Resemble giant islets.
- Regular cords of monotonous cells oriented to vasculature.
- May not be encapsulated.
- <u>β-cell tumors most common (insulinoma).</u>
- Blood glucose <50 mg/dL, precipitated by fasting or exercise
- Presents with confusion (neuroglycopenia).
- Amyloid deposition common in β-cell tumors.

- <u>Gastrinomas</u> may arise in duodenum, pancreas, or peripancreatic tissues.
- Over half are locally invasive.
- Give rise to extreme gastric acid hypersecretion.
- 25% associated with MEN-1, are multiple.


- Two-thirds of gastrinomas are found in the Zollinger-Ellison triangle bounded by the confluence of the cystic and common bile ducts and the second and third portions of the duodenum.
- Generally have metastasized at presentation.
- resectable if metastases in duodenum and liver; not if in lung or other organ.
- Follow with yearly gastrin levels if completely resected.
- Carcinomas rare and diagnosed only if metastasize.

- α-cell tumors (<u>glucagonoma</u>) present with mild diabetes mellitus, anemia, and necrolytic migratory erythema (rash).
- Occur most frequently in perimenopausal or postmenopausal women.
- δ-tumors (<u>somatostatinoma</u>) are associated with diabetes mellitus, steatorrhea, hypochlorhydria, and cholelithiasis.

- <u>VIPoma</u> may be invasive.
- Presents with severe watery diarrhea, hypokalemia, achlorhydria (WDHA syndrome).
- May be associated with neural crest tumors.
- Evorlimus (mTOR inhibitor), sunitinib (tyrosine kinase inhibitor) may be effective.

lini 1 2 3 4 5 6

Small (2 cm in diameter) intrapancreatic tumor with expansile margins showing a relatively homogeneous, deep red, hemorrhagic appearance. (Top) Gyriform festoons separated by highly vascular stroma in a clinically nonfunctioning adenoma which was immunohistochemically glucagon- positive. (Bottom)

Figs. 5-3 and 5-8

Solcia, E, Capella, C, Kloppel, G., "Tumors of the Pancreas. Atlas of Tumor Pathology Third Series, Fascicle 20. Armed Forces Institute of Pathology. Washington, D.C. 1997.

Islet cell adenoma

Well-demarcated, partly encapsulated growth of uniform cells forming regular microlobules. Compare with islet in the lower right corner.

Fig. 5-14

Solcia, E, Capella, C, Kloppel, G., "Tumors of the Pancreas. Atlas of Tumor Pathology Third Series, Fascicle 20. Armed Forces Institute of Pathology. Washington, D.C. 1997.

Cancer syndromes

- Hereditary nonpolyposis colorectal cancer (Lynch II)
- Hereditary breast and ovarian cancer
- Familial atypical multiple mole melanoma syndrome
- Peutz-Jeghers syndrome
- Hereditary Pancreatitis