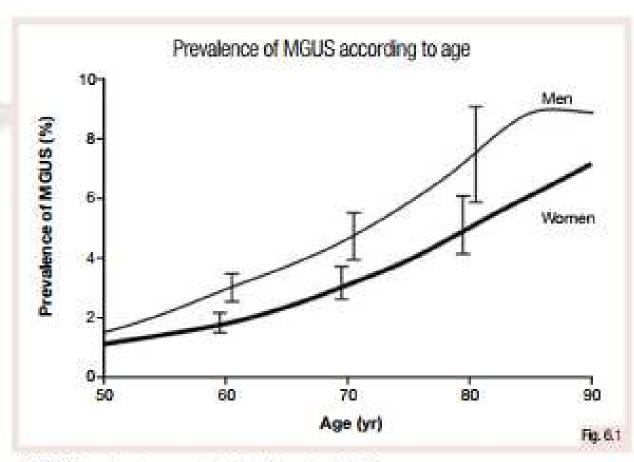
MYELOMA

Kenneth Alonso, MD, FACP

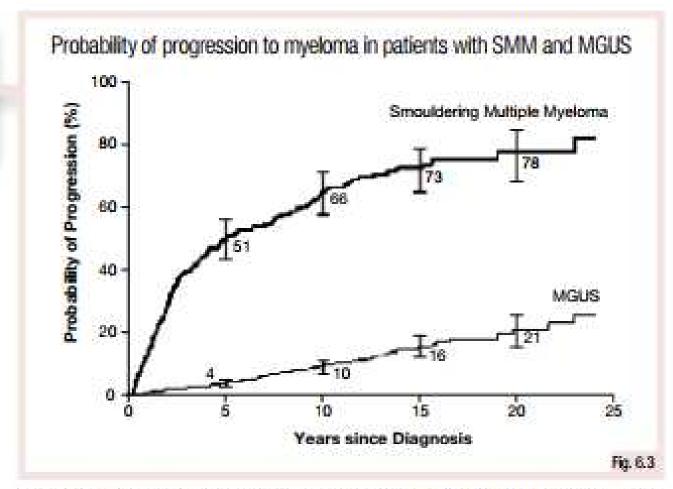
MGUS


- <u>Monoclonal gammopathy of undetermined</u> <u>significance (MGUS)</u>
- M components are identified in the blood of patients having no signs or symptoms.
- M proteins can be identified in the serum of 1% of asymptomatic healthy persons older than 50 years of age and in 3% of individuals older than 70 years of age.
- Approximately 1% of patients with MGUS progress to an overt plasma cell dyscrasia (usually multiple myeloma) per year.

MGUS

- 26% stable
- 19% progress but require no therapy
- 24% progress to multiple myeloma, amyloidosis, macroglobulemia, or lymphoma
- 23% die from other causes (over 10 years)
- IgG most common M protein
- May see Factor Xa deficiency with amyloidosis

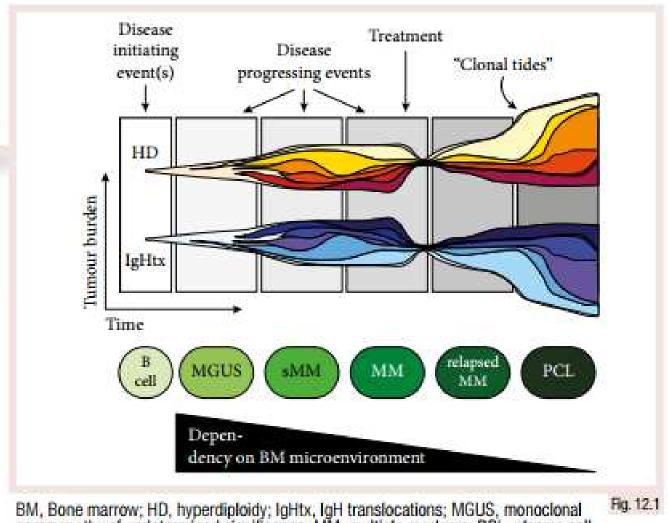
	MGUS	SMM	MM
Serum or unine M protein level	<30 g/L AND	IgG or IgA ≥30 g/L or urinary M protein ≥500 mg per 24 h AND/OR	
Bone marrow plasma cells	<10%	≥10% and <60%	≥10% OR biopsy proven plasmacytoma
	AND	AND	AND
CRAB criteria and/or biomarkers of malignancy	Absence	Absence	≥1 criteria Fig.6.2


CRA8, HyperCalcaemia, Renal insufficiency, Anaemia and Bone lesions; IgA, immunoglobulin A; IgG, immunoglobulin G; M, monoclonal; MGUS, monoclonal gammopathy of undetermined significance; MM, multiple myeloma; SMM, smouldering multiple myeloma.

MGUS, Monoclonal gammopathy of undetermined significance.

Smoldering myeloma

- >3g/dL M protein and/or >10% plasma cells in marrow distinguish MGUS from <u>smoldering</u> <u>myeloma</u>.
- Approximately 15% of patients with smoldering myeloma progress to an overt plasma cell dyscrasia per year.


MGUS, Monoclonal gammopathy of undetermined significance; SMM, smouldering multiple myeloma.

Disease initiating events

- Two types of disease-initiating events (DIEs) have been identified in the molecular pathogenesis of multiple myeloma:
- 1. Hyperdiploidy (HD), involving ≥2 trisomies.
- Likely to contain a range of low penetrance oncogenes, which leads to their selection. The hyperdiploid group tends to have a favorable prognosis and respond well to immunomodulatory drugs.

Disease initiating events

- 2. The primary translocations result from aberrant class-switch recombination, abnormal V(D)J rearrangement, or receptor revision.
- The end result is to place various oncogene sunder the influence of the strong enhancer region of the immunoglobulin genes (IgH).
- t(4;14): FGFR3/MMSET; t(6;14): CCND3, t(11;14): CCND1; t(14;16): MAF; and t(14;20): MAFB.
- DIEs share one common aberration: (in)direct overexpression of ≥1 cyclin D (CCND) gene(s).

BM, Bone marrow; HD, hyperdiploidy; IgHtx, IgH translocations; MGUS, monoclonal gammopathy of undetermined significance; MM, multiple myeloma; PCL, plasma cell leukaemia; sMM, smouldering multiple myeloma.

Myeloma evolution

- The multiple myeloma cell of origin is unknown, but may be a pro-B cell or germinal center B cell, as primary IgHtxs seem to have occurred during VDJ/class switch recombination or somatic hypermutation.
- Disease progression in multiple myeloma is characterized by a decreased bone marrow (BM) microenvironment dependency, caused by deletions and mutations that result in intrinsic activation of the NFκB pathway.

Myeloma evolution

- As the multiple myeloma genome evolves, diseaseprogressing events (DPEs) such as del(17p), del(1q), 1q gain and t(8;14) (involving MYC) are being selected.
- The MAPK/ERK, DNA damage response, NFkB, RNA processing, plasma cell differentiation, cell cycle control and MYC pathways are recurrently disrupted in multiple myeloma.

Highly proliferative tumor biology: Enriched for DIEs t(4;14), t(14;16), and t(14;20), and DPEs 1q gain, del(17p) and del(13p)

Myeloma evolution

- Two mutational etiologies have been identified in multiple myeloma: (a) an aging signature, and (b) an APOBEC signature.
- Multiple myeloma can show large intra-tumor heterogeneity, as is evidenced by the 'waxing and waning' of subclones during disease progression.
- The evolutionary pattern can be linear and/or branching.

Related to patient	Age
	Comorbidities
Related to turnour burden	Anaemia
	Thrombopaenia
	β2-microglobulin serum level
Intrinsic cellular	Genetic
	Proliferation index
Mixed	Hypoalburninaemia
	Renal insufficiency
	Response to treatment

Cytogenetic abnormality	Frequency	Prognosis
Trisomy 3	35%	Good
Trisomy 5	37%	Good
Translocation t(4;14)	15%	Poor
Translocation t(14;16)	3%	Poor
1q gain	8%	Poor
Deletion 1p32	8%	Poor
Trisomy 21	23%	Poor
Deletion 17p	8%	Poor
		Fig. 6.

Prognostic f	actor	Criteria	OS at 5 years	PFS at 5 years
ISS stage	1	β2-microglobulin <3.5 mg/dL and albumin ≥3.5 g/dL	77%	49%
	ta internet	No ISS stage or II	62%	36%
	1	β2-microglobulin ≥5.5 mg/dL	47%	30%
CA by FISH	Standard risk	No high-risk CA	69%	45%
	High risk	Presence of <i>del(17p)</i> and/or translocation <i>t(4;14)</i> and/or translocation <i>t(14;16)</i>	50%	24%
LDH	Normal	LDH < upper limit of normal	68%	42%
	High	LDH > upper limit of normal	47%	31%
R-ISS stage	1	ISS stage I and standard risk CA and normal LDH	82%	<mark>55%</mark>
	1	No R-ISS stage I or II	62%	36%
		ISS stage III and either high-risk CA or high LDH	40%	24%

CA, Chromosomal abnormalities; iFISH, Interphase fluorescent *in situ* hybridisation; ISS, International Staging System; LDH, lactate dehydrogenase; OS, overall survival; PFS, progression-free survival; R-ISS, Revised International Staging System.

Solitary plasmacytomas

- About 3% to 5% of plasma cell neoplasms present as a solitary lesion of either bone or soft tissue.
- <u>The bony lesions tend to occur in the same</u> locations as in multiple myeloma.
- Progress to multiple myeloma within 7-10 years

Solitary plasmacytomas

- Extraosseous lesions are often located in the lungs, oronasopharynx, or nasal sinuses.
- Modest elevations of M proteins in the blood or urine may be found in a minority of patients.
- Rarely progress to multiple myeloma.
- Extraosseous lesions can be cured by excision.

- Second most common hematologic malignancy.
- 50-60 years of age (median)
- Blacks twice as likely to be affected than whites
- Men 50% more likely to be affected than women
- Risk factors include radiation, benzene, formaldehyde, epichlorohdrin

- Bone pain is present in 80% of patients.
- Focal lesions involve:
- Vertebral column, 66%
- Ribs, 44%
- Skull, 41%
- Pelvis, 28%
- Femur, 24%
- Clavicle, 10%
- Scapula, 10%.

Clinical/laboratory features	Proportion of patients with abnormality (%)
Anaemia	72
Bone lesions	80
Renal failure	19
Hypercalcaemia	13
M protein on serum electrophoresis	82
M protein on serum immunofixation	93
M protein on serum plus urine immunofixation (or sFLC assay)	97
≥10% clonal BMPCs	96
BMPC, Bone marrow plasma cell; M, monoclonal; sFLC, serum free ligh	t chain. Fig. 6

Clonal BMPCs ≥10% AND one or more	of the following myeloma-defining events:	
CRAB criteria	HyperCalcaemia	
	Benal insufficiency	
	Anaemia	
	Bone lesions	
OR		
	Cional BMPCs ≥60%	
Biomarkers of mailgnancy	sFLC ratio ≥100	
	>1 focal lesion on MRI	

- Focal lesions generally begin in the medullary cavity, erode cancellous bone, and progressively destroy the bony cortex
- Often lead to pathologic fractures.
- 70% of patients will develop pathologic fractures at some point in the course of disease.
- Any cancer patient with significant back pain should undergo MRI to evaluate for cord compression.

- Fatigue, normocytic normochromic anemia, and hypercalcemia are common clinical features.
- Renal insufficiency noted in 25% of patients at diagnosis.
- Acquired Fanconi syndrome with glycosuria, phosphaturia, and aminoaciduria can occur.
- Hyperviscosity symptoms may occur with IgA and IgG3 subtypes.
- Infections common.

POEMS (POLYNEUROPATHY, ORGANOMEGALY, ENDOCRINOPATHY, MONOCLONAL PROTEIN, SKIN CHANGES)

Table 1 Criteria for the Diagnosis of POEMS Syndrome^a

Mandatory major criteria	1. Polyneuropathy (typical demyelinating)
	2. Monoclonal plasma cell-proliferative disorder (almost always λ)
Other major criteria (one required)	3. Castleman's disease ^b
	4. Sclerotic bone lesions
	5. Vascular endothelial growth factor elevation
Minor criteria	6. Organomegaly (splenomegaly, hepatomegaly, lymphadenopathy)
	7. Extravascular volume overload (edema, pleural effusion, or ascites)
	8. Endocrinopathy (adrenal, thyroid,c pituitary, gonadal, parathyroid, pancreatic)
	9. Skin changes (hyperpigmentation, hypertrichosis, glomeruloid hemangiomata, plethora, acrocyanosis, flushing, white nails)
	10. Papilledema
	11. Thrombocytosis/polycythemia ^d
Other signs and symptoms	Clubbing, weight loss, hyperhidrosis, pulmonary hypertension, restrictive lung disease, thrombotic diatheses, diarrhea, low vitamin B ₁₂ levels

^a The diagnosis of POEMS syndrome is confirmed when both of the mandatory major criteria, one of the other three major criteria, and one of the six minor criteria are present.

^b There is a Castleman's disease variant of POEMS that occurs without evidence of a clonal plasma cell disorder that is not accounted for in this table. This entity should be considered separately.

^c Because of the high prevalence of diabetes mellitus and thyroid abnormalities, this diagnosis alone is not sufficient to meet this minor criterion.

^d Approximately 50% of patients will have bone marrow changes that distinguish it from a typical MGUS or myeloma bone marrow. Anemia and/or thrombocytopenia are distinctively unusual in this syndrome unless Castleman's disease is present.

60% 5year survival

Radiographic image of the skull showing the "punched out" osteolytic lesions characteristic of multiple myeloma.

Source: Fauci AS, Kasper DL, Braunwald E, Hauser SL, Longo DL, Jameson JL, Loscalzo J: *Harrison's Principles of Internal Medicine*, 17th Edition: http://www.accessmedicine.com

Copyright @ The McGraw-Hill Companies, Inc. All rights reserved.

Fig. 106-4 Accessed 02/01/2010

- Antigen driven somatic mutation in complementaritydetermining regions of the variable gene segment of B-cells.
- Somatic hypermutation of Ig genes (post-germinal memory B-cell).
- 5 recurrent translocations involving heavy chain locus on chromosome 14 have been identifed.
- t(11;14), CD20 + lymphoplasmacytic

- Cyclin D1 (11q13) and D3 (6p21) are other translocation partners as are MUM1/IRF4 transcription factor (6p25) and FGFR3 (4p16).
- t(4;16) is a deletion of 17 base pairs that is found in 5% of myelomas
- Involves c-MAF transcription factor (16p23).
- t(4;4) seen in 15% of myelomas
- Poor prognosis
- 1p21, 1p15 abnormal in 40-50%
- 14q+ (20-25%)
- T(11,14) (12-30%)
- 11q abnormality associated with poor prognosis

- Amplification of 1q (amp1q)
- > 4 copies
- Present in 10% of newly diagnosed cases and is tightly linked to high-risk disease.
- Amp1q arises via multiple cycles of break-fusionbridge leading to the amplification of a transcriptional unit at 1q21 comprising a number of key genes including CKS1B, MCL1, and ANP32E.
- The basis of amplification of 1q may be due to hypoxia and the expression of KDM4A.

- Loss of 1p32 is associated with high-risk disease and the deletion of the cyclin-dependent kinase inhibitor CDKN2C.
- Loss of this cell cycle inhibitor deregulates the G1/S cell cycle checkpoint.
- Another important region of deletion is located at 1p12, which contains FAM46C, which is also frequently mutated.

- Deletions of 17p are seen in about 5% of patients at diagnosis, but is more frequent at relapse and in high-risk disease.
- Monallelic TP53 loss is not prognostic.
- Biallelic inactivation, by copy number loss and/or mutation, is a very poor prognostic feature and is associated with high-risk disease.

- Deletions of chromosome 13 are a feature of approximately 40% of myeloma cases.
- A secondary event.
- Biallelic deletions associated with poor prognosis
- RB1 and DIS3 may be inactivated.
- Mutations in KRAS, NRAS, and, BRAF account for 50% of all cases at presentation.
- These numbers increase at relapse.
- Elevation of Activin-A is also a sign of poor prognosis

- IL-6 produced by stromal cells, osteoclasts
 - IL-1β stimulates stromal cells
- Non-transmembrane gp80 (IL-6sr) bound to IL-6 stimulates gp130
- gp130 forms part of IL-6, G-CSF receptor
- Occupation initiates signal transduction in myeloma cell as activation leads to Jak kinase activity (interferon stimulates), ras protein activation leading to mitogen activated protein kinase activity and that of transcription factors such as NF-kB and IL-6
- G-CSF also stimulates gp130 and mobilizes myeloma cells
- High levels of IL-6sr associated with poor prognosis
- IL-6 inhibits apoptosis

- Decreased production of the natural RANKL inhibitor osteoprotegerin coupled with increased secretion of the osteoclast activating factors such as RANKL and MIP-1 leads to bone damage.
- Proliferation sustained by IL-6.
- β-2 microglobulin a good marker for disease activity.

- Neo-angiogenesis along with mesenchymal stem cell derived pericyte abnormalities may directly affect the endosteal and perivascular niches
- Lead to vascular leak and alteration in the immune content of the bone marrow.

- The changes in the microenvironment can be mediated directly by:
- Integrins, such as ITGB7
- Secreted factors that generate paracrine loops
- Upregulating cytokines via the stromal cells such as interleukin (IL)-6.
- In addition, secreted exosomes with their cargo of miRNA may be important.

Multiple myeloma

- CD40 important in activation and transduction of Bcell
- B cell maturation antigen (BCMA) is a member of the TNF superfamily.
- Preferentially expressed on mature B-cells
- CD44, CD56, LFA-1 adhesion molecules important in homing to marrow
- VLA-4 bind to VCAM-1 and stromal cells; Syndecan-1 to Collagen I and VLA-4 to fibronectin and the basement membrane

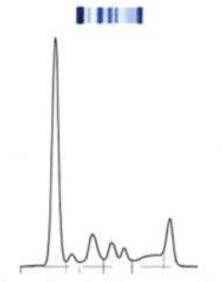
Pathologic diagnosis

- Minimal diagnostic criteria:
- >10% plasma cells in the bone marrow (or histologic proof of a plasmacytoma)
- AND
- M protein in the serum (>3gm/dL) or urine or lytic bone lesions.
- Serum protein electrophoresis with immunofixation necessary to demonstrate subtype.
- Circulating monoclonal protein is IgG (50%), IgA (20%), light chain only (Bence-Jones proteinemia, 20%), IgD (2%), biclonal (1%).

DEFINITIONS OF SMOLDERING AND MULTIPLE MYELOMA

Smoldering Myeloma (Asymptomatic)^a

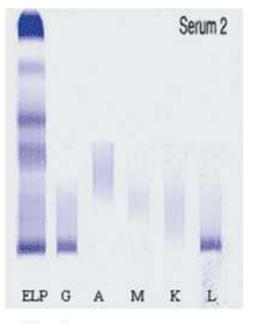
- Serum monoclonal protein ≥3 g/dL
- or
- Bence-Jones protein ≥500 mg/24 h
- and/or
- Clonal bone marrow plasma cells 10%–59% and
- · Absence of myeloma-defining events or amyloidosis
- If skeletal survey negative, assess for bone disease with wholebody MRI, FDG PET/CT, or low-dose CT scan


Multiple Myeloma (Symptomatic)^{a,b}

Clonal bone marrow plasma cells ≥10% or biopsy-proven bony or extramedullary plasmacytoma and

Any one or more of the following myeloma-defining events:

- Calcium >0.25 mmol/L (>1 mg/dL) higher than the upper limit of normal or >2.75 mmol/L (>11 mg/dL)
- Renal insufficiency (creatinine >2 mg/dL) [>177 µmol/L] or creatinine clearance <40 mL/min
- Anemia (hemoglobin <10 g/dL or hemoglobin >2 g/dL below the lower limit of normal)
- · One or more osteolytic bone lesions on skeletal radiography, CT, or FDG PET/CT
- Clonal bone marrow plasma cells ≥60%
- Involved:uninvolved serum FLC ratio ≥100 and involved FLC concentration 10 mg/dL or higher
- >1 focal lesions on MRI studies ≥5 mm


Immunoelectrophoresis

Serum Protein Electrophoresis

Source: Kantarjian HM, Wolff RA, Koller CA: MD Anderson Manual of Medical Oncology: http://www.accessmedicine.com

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

Serum protein electrophoresis demonstrates an M protein peak (*left*). Immunofixation electrophoresis confirms it to be monoclonal IgG lambda type.

Fig.8-8 Accessed 02/01/2010

Multiple myeloma

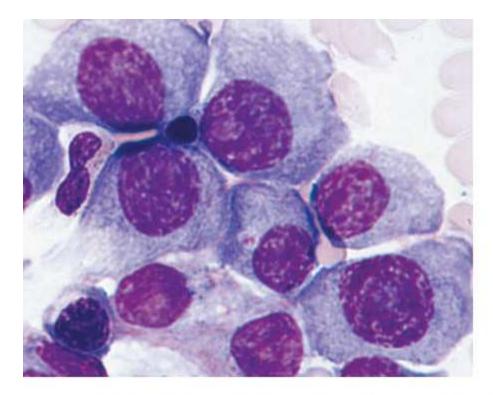
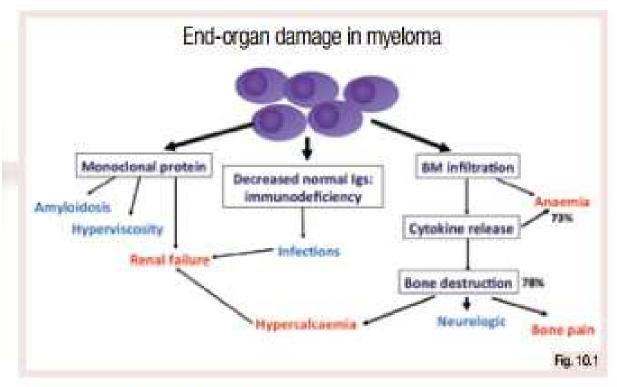


Fig. e11-56 Accessed 02/01/2010

Source: Fauci AS, Kasper DL, Braunwald E, Hauser SL, Longo DL, Jameson JL, Loscalzo J: Harrison's Principles of Internal Medicine, 17th Edition: http://www.accessmedicine.com

Copyright @ The McGraw-Hill Companies, Inc. All rights reserved.

STAGING SYSTEMS FOR MULTIPLE MYELOMA^a


Stage	International Staging System (ISS)	Revised-ISS (R-ISS)
I	Serum beta₋2 microglobulin <3.5 mg/L, Serum albumin ≥3.5 g/dL	ISS stage I and standard-risk chromosomal abnormalities by FISH ^b and Serum LDH ≤ the upper limit of normal
II	Not ISS stage I or III	Not R-ISS stage I or III
	Serum beta-2 microglobulin ≥5.5 mg/L	ISS stage III and either high-risk chromosomal abnormalities by FISH ^b or Serum LDH > the upper limit of normal

Durie-Salmon staging

Stage	Criteria	
I Low risk (All present)	Hemoglobin >10 g/dL	
	Serum calcium 12 mg/dL (normal)	
	Normal bone or solitary plasmacytoma on x-ray	
	Low production rates of M component:	
	IgG <5 g/dL or igA <3g/dL	
	Urine light chain M component <4 g/24h	
II Intermediate risk	Not fitting stage I or III	
III High risk (One or more present)	Hemoglobin <8.5 g/dL	
	Serum calcium >12 mg/dL	
	Multiple lytic bone lesions on x-ray	
	High production rates of M component:	
A if serum creatinine <2.0 mg/dL	IgG <7 g/dL of IgA <5 g/dL	
B if serum creatinine >2.0 mg/dL	Urine light chain M component <12 g/24h	

Complications of myeloma

- Immunoglobulin (Bence-Jones protein) deposition leads to nodular mesangial expansion granular deposits of immunoglobulin.
- Macrophages and giant cells may be seen.
- Immunoglobulin demonstrated on gomerular tufts and renal tubules with immunofluorescent staining.
- Kappa light chain principally involved.
- No deposits on electron microscopy.
- Complication of dehydration, hypercalcemia.

BM, Bone marrow; Ig, immunoglobulin.

Myeloma-defining events

Evidence of end-organ damage that can be attributed to the underlying plasma cell proliferative disorder, specifically:

- Hypercalcaemia: serum calcium >0.25 mmol/L (>1 mg/dL) higher than the upper limit of normal or >2.75 mmol/L (>11 mg/dL)
- Renal insufficiency: creatinine clearance <40 mL per minute or serum creatinine >177 µmol/L (>2 mg/dL)
- Anaemia: haemoglobin value of >20 g/L below the lower limit of normal, or a haemoglobin value <100 g/L
- Bone lesions: one or more osteolytic lesions on skeletal radiography, computed tomography (CT), or fluorodeoxyglucose (FDG)-positron emission tomography (PET)-CT

Fig. 10.2.

Any one or more of these biomarkers of malignancy:

- Clonal plasma cell bone marrow infiltration ≥60%
- Involved: uninvolved serum free-light chain ratio ≥100

>1 focal lesion on magnetic resonance imaging studies

Plasma cell leukemia

- Plasma cells >20% in peripheral blood
- or >2,000 cells/L
- Marrow over 90% myeloma cells
- Higher counts associated with poorer outcomes
- Extramedullary disease
- Rare bone lesion
- Paraprotein complications
- Mean age of presentation 61 years of age
- 25% 1year survival
- IgG, light chain disease, non-secretory in descending order of incidence

Plasma cell leukemia

- t(11;14), t(14;16), and t(4;14)
- Other deletions 1p, 6q, 8p, 13q, 14q, and 16q
- TP53 and DIS3 mutations are more common in PCL than in MM
- NRAS, KRAS, and BRAF less common in PCL than in MM
- Autologous stem cell transplant, bortozemib, and lelanomide

Systemic amyloidosis

- May be asymptomatic.
- Symptoms depend on magnitude and site of deposits.
- Pressure atrophy of adjacent cells results
- <u>Types</u>:
- Light chain (AL)
- Reactive (AA)
- Hemodyalisis related (A β_2 M)

Systemic amyloidosis

- <u>Deposition of mis-folded proteins as insoluble</u> <u>fibrillary aggregates in extracelluar space in</u> <u>normal organs and tissues.</u>
- Soluble in their normal folded configuration
- Pleated sheets in a zig-zag configuration
- Cross-β-pleated sheet of continuous <u>non-branching</u> fibrils oriented parallel to fibril axis comprise approximately 95% of the amyloid material.
- Serum amyloid P component and other glycoproteins bound, form 5% of amyloid material

Systemic amyloidosis

 Measurement of NT-proBNP (N-terminal pro-brain natriuretic peptide [and, if indicated, of cardiac troponin-T]) and urine for protein – would detect
 >90% of such cases very early, potentially improving outcomes.

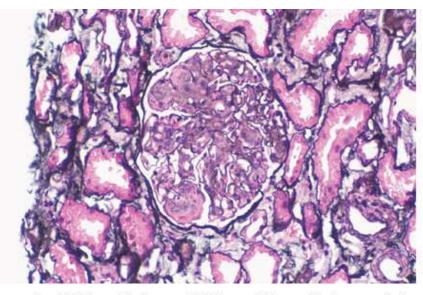
Type of systemic amyloidosis	Amyloid protein	Underlying cause	Age of onset	Organs most commonly affected	Additional information
Light-chain amyloidosis 🖵	 Light chains of immunoglobulins → AL amyloid protein 	 Plasma cell dyscrasias (e.g., multiple myeloma) 	 > 40 years 	 Heart Kidney Tongue Autonomic nervous system Gastrointestinal tract 	 Most common form of amyloidosis in the western world Rapidly progressive clinical course
Reactive amyloidosis 🖵	 Serum amyloid-associated protein (SAA) AA amyloid protein 	 Chronic inflammatory conditions (e.g., IBD, rheumatoid arthritis, SLE) Chronic infectious diseases (e.g., tuberculosis, osteomyelitis) Certain tumors (e.g., renal cell carcinoma, lymphomas) 	• Any age	 Kidney Adrenal glands Liver and spleen Gastrointestinal tract 	 Most common form of amyloidosis in the developing world The progression of the disease can be slowed by controlling the underlying condition.
Hemodialysis–associated amyloidosis	 β2-microglobulin → Aβ2M amyloid protein 	• Long-term hemodialysis 🖵	 ~ 10 years after starting hemodialysis 	 Joints and tendons 	 Almost all individual on long-term hemodialysis will develop amyloidosis at some point

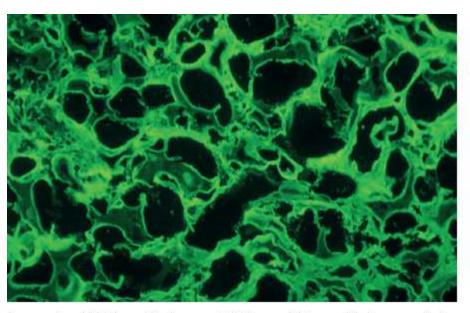
DEFINITION OF ORGAN INVOLVEMENT BASED ON AMYLOIDOSIS CONSENSUS CRITERIA¹

Kidney	24-h urine protein >0.5 g/d, predominantly albumin		
Heart	Echo: mean wall thickness >12 mm, no other cardiac cause or an elevated NT-proBNP (>332 ng/L) in the absence of renal failure or atrial fibrillation		
Liver	Total liver span >15 cm in the absence of heart failure or alkaline phosphatase >1.5 times institutional upper limit of normal		
Nerve	Peripheral: clinical; symmetric lower extremity sensorimotor peripheral neuropathy Autonomic: gastric-emptying disorder, pseudo-obstruction, voiding dysfunction not related to direct organ infiltration		
Gastrointestinal tract	Direct biopsy verification with symptoms		
Lung	Direct biopsy verification with symptoms Interstitial radiographic pattern		
Soft tissue	Tongue enlargement, clinical Arthropathy Claudication, presumed vascular amyloid Skin Myopathy by biopsy or pseudohypertrophy Lymph node (may be localized) Carpal tunnel syndrome		

Organ Involvement

Revised Consensus Criteria for amyloidosis involvement from XII International Symposium on Amyloidosis: Gertz M and Merlini G. Definition of organ involvement and response to treatment in AL amyloidosis: an updated consensus opinion [abstract]. Amyloid 2010 17(Suppl 1):48-49. (Abstract CP-B).


PROGNOSTIC STAGING SYSTEM FOR LIGHT CHAIN AMYLOIDOSIS

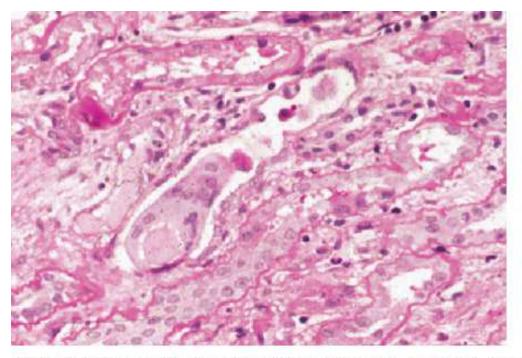

Prognostic Variables	Value	Assigned Prognostic Variable Score
cTnT	≥0.025 ng/mL (or hs-cTnT ≥40 pg/mL)	1
NT-ProBNP	≥1,800 pg/mL	1
FLC-diff	≥18 mg/dL	1

REVISED STAGING SYSTEM BASED ON THE ABOVE THREE PROGNOSTIC SCORES¹

Total Prognostic Score	Stage
0	Stage I
1	Stage II
2	Stage III
3	Stage IV

Light chain deposition disease

Source: Fauci AS, Kasper DL, Braunwald E, Hauser SL, Longo DL, Jameson JL, Loscalzo J: Harrison's Principles of Internal Medicine, 17th Edition: http://www.accessmedicine.com Copyright @ The McGraw-Hill Companies, Inc. All rights reserved.


Source: Fauci AS, Kasper DL, Braunwald E, Hauser SL, Longo DL, Jameson JL, Loscalzo J: Harrison's Principles of Internal Medicine, 17th Edition: http://www.accessmedicine.com

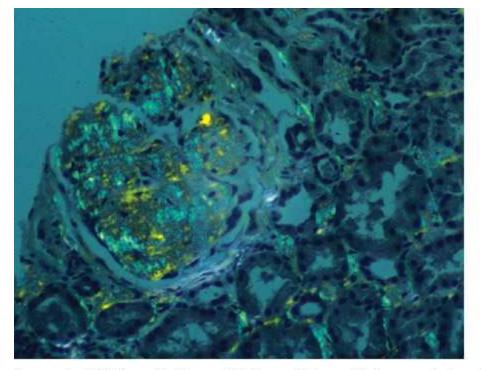
Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

Fig. e9-14 Accessed 03/17/2010

There is mesangial expansion, often nodular by light microscopy (left). Immunofluorescence shows monoclonal staining of tubules and glomerular tufts (right). More commonly kappa light chain is involved. (ABF/Vanderbilt Collection.)

Light chain cast nephropathy

Source: Fauci AS, Kasper DL, Braunwald E, Hauser SL, Longo DL, Jameson JL, Loscalzo J: *Harrison's Principles of Internal Medicine*, 17th Edition: http://www.accessmedicine.com


Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

Monoclonal light chains precipitate in tubules and result in a syncytial giant cell reaction surrounding the cast, and a surrounding chronic interstitial nephritis with tubulointerstitial fibrosis. Worsened in dehydration.

(ABF/Vanderbilt Collection.)

Fig. e9-15 Accessed 03/17/2010

Amyloidosis

Source: Fauci AS, Kasper DL, Braunwald E, Hauser SL, Longo DL, Jameson JL, Loscalzo J: Harrison's Principles of Internal Medicine, 17th Edition: http://www.accessmedicine.com Copyright © The McGraw-Hill Companies, Inc. All rights reserved. Amyloidosis shows amorphous, acellular expansion of the mesangium, with material often also infiltrating glomerular basement membranes, vessels, and in the interstitium, with apple-green birefringence by polarized Congo red stain. The deposits are composed of randomly organized 9- to 11nm fibrils by electron microscopy.

(ABF/Vanderbilt Collection.)

Fig. e9-13 Accessed 03/17/2010

- Solitary plasmacytoma is treated with radiation therapy to involved site (if in bone)
- 40-50Gy in 1.8-2.0 Gy/fraction
- OR surgical removal (extraosseus).
- Close follow-up essential because of the risk of overt myeloma.

- If the patient is asymptomatic, the disease is referred to as smoldering multiple myeloma.
- Observed.
- Stage I patients (as well as those with smoldering disease) can be observed until progression to higher stage.
- For smoldering disease, the mean time to progression is 2 years.
- Upfront transplant is best treatment option.

- Proteasome inhibitor (bortezomib), immunomodulatory drug (lelanidomide), dexamethasone, with/without anti-CD38 antibody as induction therapy in high risk myeloma
- Similar outcomes with or without anti-CD38 antibody
- Bortezomib, a NFκB inhibitor
- Del 13 responds best.
- Bortezomib also eliminates t(4;14), t(14;16) and del 17p as prognostic factors

- Lenalidomide and dexamethasone administered prior to collection of stem cells for autologous stem cell transplantation.
- Then, melphalan followed by stem cell therapy
- All suitable patients are transplanted.
- Two transplants within 12 months (tandem)
- Maintenance therapy with lenalidomide.

- Proteasome inhibitor and/or immunomodulatory drug maintenance following autologous stem cell transplant.
- CD38-directed monoclonal antibodies (daratumumab and ixasomib)
- Elotuzumab targets SLAMF7
- Relapse drug options based on earlier response

- Used in frail patients or those with poor functional status:
- Bortezomib/dexamethasone
- Lenalidomide/dexamethasone
- Pomalidomide/dexamethasone
- Single-agent daratumumab
- Most relapse on lenalidomide.
- Bortezomib/pomalidomide/dexamethasone
 preferable.

- Median survival 4 years without transplant.
- If 17p deletion, consider adding selinexor (inhibitor of the nuclear export protein XPO1; as a result of inhibition, cargo is trapped in the nucleus, resulting in cell cycle arrest and apoptosis.)
- Daratmtumab and bortezomib in refractory disease
- In treatment failures, CAR-T therapy probably the better choice

 Bortezomib with cyclophosphamide and dexamethasone is the treatment regimen of choice in systemic amyloidosis therapy

Frailty index

	HR for OS (95% CI)	P	Score	
Aga, years				
s75	1	~	0	
76-80	1.13 (0.76-1.69)	0.549	1	
>80	2.40 (1.56-3.71)	<0.001	2	
ADL	the set			
>4	1	-	0	
s4	1.67 (1.08-2.56)	0.020	1	
IADL				
>5	1		0	
s5	1.43 (0.96-2.14)	0.078	1	
ca				
s1	1	22	0	
22	1.37 (0.92-2.05)	0.125	7	

HR, hazard ratio; IADL, Instrumental Activities of Daily Living; OS, overall survival.

The IMWG Frailty Index is based on age, Charlson Comorbidity Index (CCI) and (Instrumental) Activities of Daily Living ([I]ADL). Definitions are as follows: fit score 0, unfit/intermediate fit score 1 and frail score 2 or higher.

Overall survival (a) and discontinuation rate (b) in fit, unfit and frail patients.

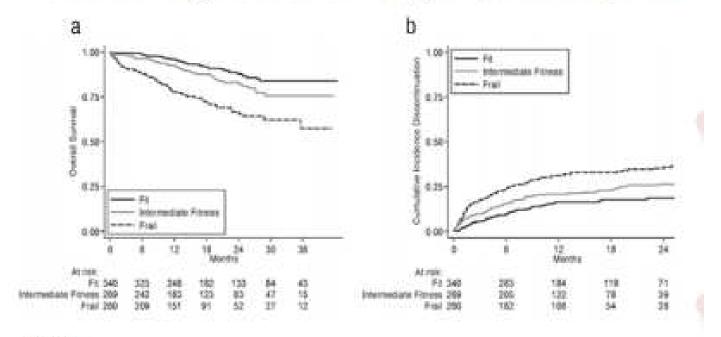
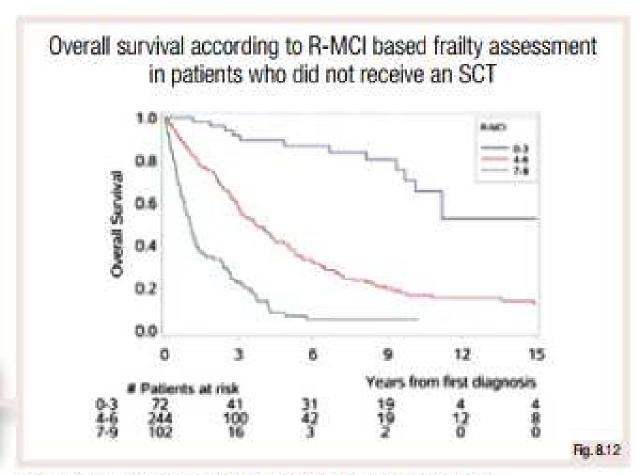



Fig. 8.11

R-MCI, Revised-Myeloma Comorbidity Index; SCT, stem cell transplantation.

MYELOMA THERAPY^{a-d}

PRIMARY THERAPY FOR NON-TRANSPLANT CANDIDATES
Preferred Regimens
Bortezomib/lenalidomide/dexamethasone (category 1) ¹
Daratumumab ^f /lenalidomide/dexamethasone (category 1)
 Lenalidomide/low-dose dexamethasone (category 1)^k
Bortezomib/cyclophosphamide/dexamethasone ^e
Other Recommended Regimens
Carfilzomib/lenalidomide/dexamethasone
 Ixazomib/lenalidomide/dexamethasone
Daratumumab ^f /bortezomib/melphalan/prednisone (category 1)
Daratumumab ^f /cyclophosphamide/bortezomib/dexamethasone
Useful In Certain Circumstances
Bortezomib/dexamethasone
Cyclophosphamide/lenalidomide/dexamethasone
Carfilzomib/cyclophosphamide/dexamethasone ^g
MAINTENANCE THERAPY

Preferred Regimens • Lenalidomide (category 1)

Other Recommended Regimens • Bortezomib

Useful In Certain Circumstances • Bortezomib/lenalidomide

MYELOMA THERAPY^{a-d}

THERAPY FOR PREVIOUSLY TREATED MULTIPLE MYELOMA^{I,m}

Preferred Regimens Daratumumab^f/lenalidomide/dexamethasone (category 1) Bortezomib/lenalidomide/dexamethasone Carfilzomib/lenalidomide/dexamethasone (category 1)ⁿ Isatuximab-irfc/pomalidomide/dexamethasone (category 1)^o Daratumumab^t/bortezomib/dexamethasone (category 1) Ixazomib/lenalidomide/dexamethasone (category 1)ⁿ Daratumumab^f/carfilzomib/dexamethasone (category 1) Ixazomib/pomalidomide^p/dexamethasone Pomalidomide^P/bortezomib/dexamethasone (category 1) Other Recommended Regimens Belantamab mafodotin-blmf^q Daratumumab^f/pomalidomide^r/dexamethasone Elotuzumab/bortezomib/dexamethasone Bendamustine/bortezomib/dexamethasone · Bendamustine/lenalidomide/dexamethasone Elotuzumab⁵/lenalidomide/dexamethasone (category 1)ⁿ Bortezomib/liposomal doxorubicin/dexamethasone (category 1) Elotuzumab/pomalidomide/dexamethasone^r Bortezomib/cyclophosphamide/dexamethasone Ixazomib/cvclophosphamide/dexamethasone · Panobinostat^u/bortezomib/dexamethasone (category 1) · Carfilzomib/cyclophosphamide/dexamethasone Carfilzomib (twice weekly)/dexamethasone (category 1) Pomalidomide^P/cyclophosphamide/dexamethasone Pomalidomide^p/carfilzomib/dexamethasone Cyclophosphamide/lenalidomide/dexamethasone Daratumumab^T/cyclophosphamide/bortezomib/dexamethasone Useful In Certain Circumstances Bendamustine High-dose cyclophosphamide Ixazomib/dexamethasone Bortezomib/dexamethasone (category 1) Lenalidomide/dexamethasone^t (category 1) Carfilzomib/cyclophosphamide/thalidomide/dexamethasone · Carfilzomib (weekly)/dexamethasone Panobinostat^u/carfilzomib Daratumumab^{f,v} · Panobinostat^u/lenalidomide/dexamethasone

- Dexamethasone/cyclophosphamide/etoposide/cisplatin (DCEP)^h
- Dexamethasone/thalidomide/cisplatin/doxorubicin/cyclophosphamide/etoposide (DT-PACE)^h ± bortezomib (VTD-PACE)^h
- Pomalidomide^p/dexamethasone^t (category 1)
- Selinexor/dexamethasone^w
- Venetoclax/dexamethasone only for t(11;14) patients

SYSTEMIC LIGHT CHAIN AMYLOIDOSIS THERAPY (Order of regimens is alphabetical and does not indicate preference)

PRIMARY THERAPY FOR TRANSPLANT CANDIDATES^{1,2,3}

Preferred Regimen:

Bortezomib⁴/cyclophosphamide/dexamethasone

Other Recommended Regimens:

Bortezomib⁴ ± dexamethasone

Bortezomib⁴/lenalidomide⁵/dexamethasone

Bortezomib⁴/melphalan/dexamethasone

Lenalidomide⁵/cyclophosphamide/dexamethasone
 Lenalidomide⁵/dexamethasone

Melphalan/dexamethasone

PRIMARY THERAPY FOR NON-TRANSPLANT CANDIDATES^{1,3} (if not a candidate for stem cell transplant at initial diagnosis, reassess after 2 cycles of systemic therapy)

Preferred Regimen:

Bortezomib⁴/cyclophosphamide/dexamethasone

Melphalan/dexamethasone

Other Recommended Regimens: • Bortezomib⁴ ± dexamethasone

Bortezomib⁴/lenalidomide⁵/dexamethasone

Bortezomib⁴/melphalan/dexamethasone

Lenalidomide⁵/cyclophosphamide/dexamethasone
 Lenalidomide⁵/dexamethasone

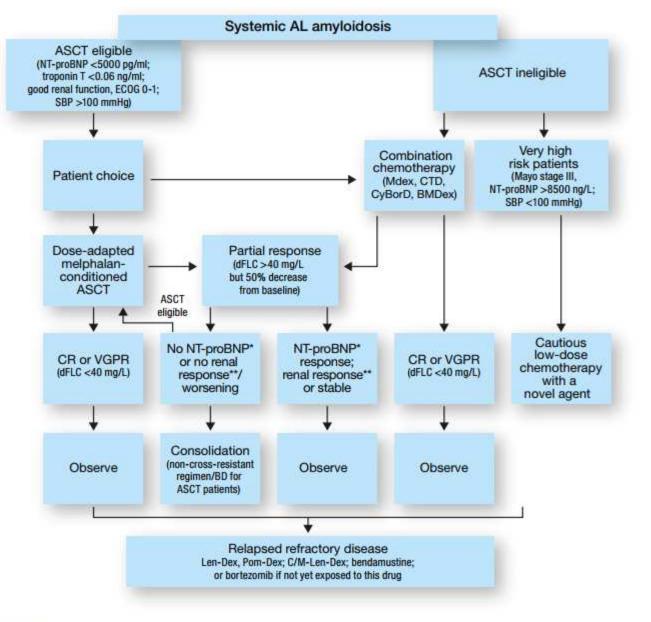


Fig. 18.7

*Reduction of 30% and 300 ng/L

** 50% decrease in proteinuria with stable or < 25% increase in serum creatinine

AL, Light-chain; ASCT, autologous stem cell transplantation; BD, bortezomib/dexamethasone; BMDex, bortezomib/melphalan/dexamethasone; C/M-Len-Dex, cyclophosphamide/melphalan/lenalidomide/ dexamethasone; CR, complete response; CTD, cyclophosphamide/thalidomide/dexamethasone; CyBorD, cyclophosphamide/bortezomib/dexamethasone; dFLC, difference between involved minus uninvolved serum free light chains; ECOG, Eastern Cooperative Oncology Group; Len-Dex, lenalidomide/dexamethasone; Mdex, melphalan/dexamethasone; NT-proBNP, N-terminal pro-brain natriuretic peptide; Pom-Dex, pomalidomide/dexamethasone; SBP, systolic blood pressure; VGPR, very good partial response.

THERAPY FOR PREVIOUSLY TREATED DISEASE^{1,6}

Consider repeating initial therapy, especially if relapse-free for several years • High-dose melphalan⁷ with stem cell transplant • Bortezomib⁴ ± dexamethasone • Bortezomib⁴/melphalan/dexamethasone • Daratumumab^{8,9,10}

- Ixazomib ± dexamethasone
 Lenalidomide⁵/cyclophosphamide/dexamethasone
 Lenalidomide⁵/dexamethasone

- Melphalan/dexamethasone
 Pomalidomide/dexamethasone

Adoptive T cell immunotherapeutic strategies

1. Unmodified cells:

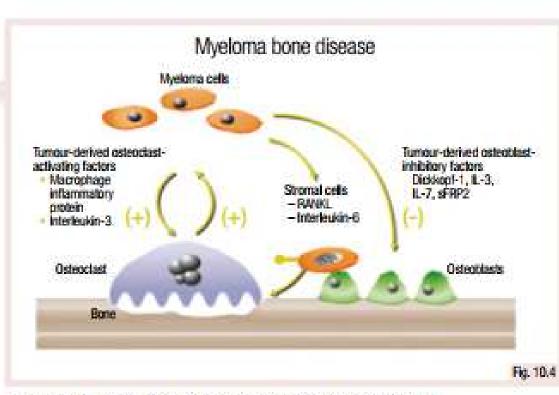
Marrow infiltrating lymphocytes (MILs) \rightarrow Broad endogenous tumour specificity, enriched for central memory T cells \rightarrow more suitable for adoptive T cell approaches

2. CAR-T cells:

ASCT plus CTL019 → Rescue therapy in 12 patients progressing within 1 year after ASCT. Median PFS: 6 months, all patients have progressed

CAR-T-BCMA → Rescue therapy in 6 RRMM patients after a median of 9 prior lines. 1 sCR (+7 m), 1 VGPR (+5m) and 2 MR

BCMA Ab (conjugated with auristatin) → 24 patients after more than 4 prior lines. 25% of unconfirmed responses Fig. 9.15


Ab, Antibody; ASCT, autologous stem cell transplantation; BCMA, B-cell maturation antigen; CAR, chimeric antigen receptor; MR, minimal response; PFS, progression-free survival; RRMM, relapsed/refractory multiple myeloma; sCR, stringent complete response; VGPR, very good partial response.

Measurable disease de	
Serum M protein	≥10 g/L
Unine M protein	≥200 mg/24 h
Serum FLC assay	Involved FLC level ≥100 mg/L provided serum FLC ratio is abnormal

FLC, Free light chain; M, monoclonal.

Fig. 6.10

Response subcategory	Response criteria	
Stringent complete response (sCR)	Complete response plus normal FLC ratio and absence of clonal cells in bone marrow	
Complete response (CR)	Negative immunofixation on the serum and urine and <5% plasma cells in bone marrow	
Very good partial response (VGPR)	Serum and unine M protein detectable by immunofixation but not on electrophoresis, or ≥90% reduction in serum M protein plus unine M protein level <100 mg per 24 h	
Partial response (PR)	\geq 50% reduction of serum M protein plus reduction in 24 h uninary M protein by \geq 90% or to <200 mg per 24 h; if the serum and unine M protein are unmeasurable a \geq 50% decrease in the difference between involved and uninvolved FLC levels is required	
Stable disease (SD)	Not meeting criteria for CR, VGPR, PR or PD	
Progressive disease (PD)	 Increase of 25% from lowest value in serum M component (absolute increase must be ≥0.5 g/dL) and/or urine M component (absolute increase must be ≥200 mg/24 h); if the serum and urine M protein are unmeasurable, a ≥25% increase in the difference between involved and uninvolved FLC levels is require and/or Development of new bone lesions or soft tissue plasmacytomas or definite increase in the size of existing bone lesions or soft tissue plasmacytomas and/or 	
	Development of hypercalcaemia Fig. 6.1	

IL, Interleukin; RANKL, receptor activator of nuclear factor kappa-B ligand.

Prevention of bone disease

Practical recommendations during BP therapy

- Calcium and vitamin D3 should be used to maintain the calcium homeostasis
- All BP-treated patients should have creatinine clearance, serum electrolytes and urinary albumin monitored

Preventive strategies to avoid osteonecrosis of the jaw

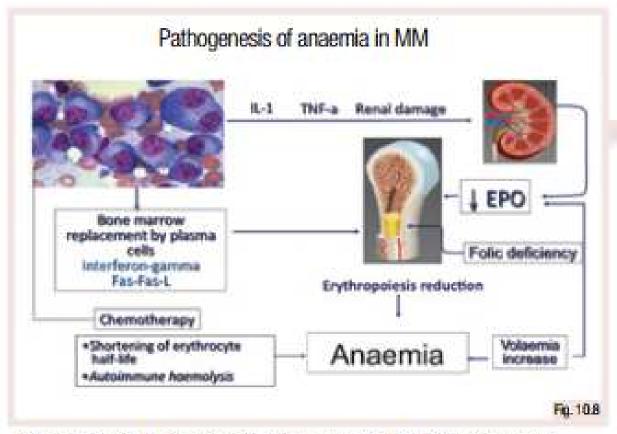
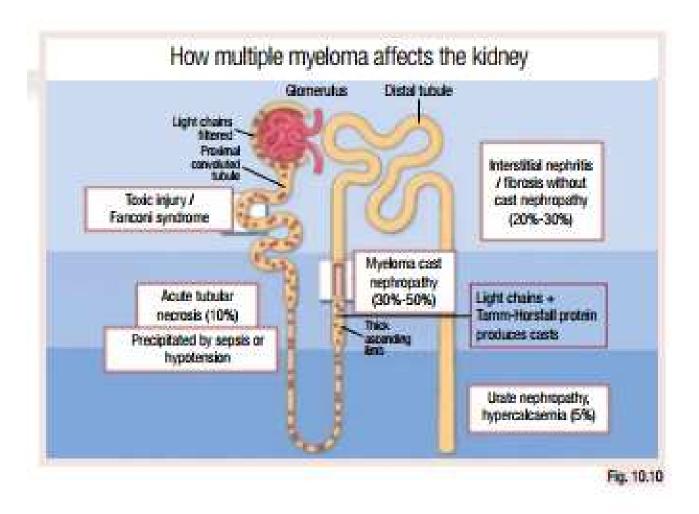

Comprehensive dental examination to treat all dental problems before initiating BP

Fig. 10.6

- Educate about dental hygiene
- Unnecessary invasive dental procedures should be avoided
- If osteonecrosis occurs, BP therapy should be discontinued until healed


BP, Bisphosphonate.

Therapeutic strategies			
Procedure	Recommendations		
Balloon kyphoplasty	Painful vertebral compressive fractures		
Vertebroplasty	Remains debatable in the absence of prospective trials		
Radiotherapy	 Solitary plasmacytoma, symptomatic spinal cord compression, extremely painful lytic lesions Prevention of pathological fractures 		
Surgery	 To fix pathological fractures of the long bones To prevent and restore axial skeleton in cases of unstable spinal fractures For spinal cord compression with bone fragments within the spinal route 		

EPO, Erythropoietin; IL, interleukin; MM, multiple myeloma; TNF, tumour necrosis factor.

Condition	Management
 Symptomatic anaemia or Asymptomatic anaemia with: cardiac disease chronic pulmonary disease cerebral vascular disease 	Transfusional support
 Persistent symptomatic anaemia, usually <10 g/dL with other causes of anaemia excluded 	Use of erythropoiesis-stimulating agents (ESAs): Erythropoietin-α 40 000 UI/week • Erythropoietin-β 30 000 UI/week • Darbepoetin 150 µg/week or 500 µg/3 weeks
	Increase more than 12 g/dL 6–8 weeks if adequate response is not achieved ncy during treatment with an ESA should be treated Fig. 10.5

Renal insufficiency diagnosis and management in MM

Myeloma-related renal insufficiency includes the presence of:

- Serum creatinine ≥2 mg/dL, or
- Estimated glomerular filtration rate (eGFR) <40 mL/minute

The patient has to present proteinuria, which consists mainly of light chains

Management:

- · Effective therapy
- Adequate hydration
- Urine alkalinisation
- Treatment of hypercalcaemia if present
- Plasma exchange remains controversial
- Dialysis is required (conventional versus high cut-off dialysers is controversial)

MM, Multiple myeloma.

Fig. 10.11

Management of hypercalcaemia in MM

- Definition: lonic calcium >11 mg/dL (mild <12 mg/dL; moderate 12-14 mg/dL; severe >14 mg/dL)
- Pathogenesis: Local resorption of bone induced by release of cytokines and production of humoural osteoclast activators
- Symptoms: Dehydration, lethargy and psychosis, malaise, fatigue, headaches, constipation, ...
- Approaches to management:
 - Increase urinary calcium excretion: Isotonic saline with or without loop diuretics

Fig. 10.13

- Diminish bone resorption: bisphosphonates
- Decrease intestinal calcium absorption: corticosteroids
- Dialysis if required
- Active treatment of myeloma

MM, Multiple myeloma.