#### BONE

#### **BIOMECHANICS OF THE SPINE**

Kenneth Alonso, MD, FACP

- The muscles of the neck are compartmentalized into seven fascial planes.
- These planes normally enable pain-free movement of one muscle group on the other.
- The <u>platysma</u> draws the corners of the mouth inferiorly and widens the mouth.
- It draws the skin of the neck superiorly when the teeth are clenched.

- The <u>sternocleidomastoid</u> tilts laterally, flexes the neck and rotates the neck so the face is turned superiorly toward the opposite side. (unilateral action).
- It is shortened in congenital torticollis
- The sternocleidomastoid extends the neck at the atlanto-axial joints while flexing inferior vertebrae so chin is thrust forward while the head is kept level. (bilateral action).
- With the cervical vertebrae fixed, the sternocleidomastoid may elevate the manubrium and medial ends of the clavicles, assisting in the pump-handle action of deep respiration.

- The <u>trapezius</u> (superior fibers) elevate the pectoral girdle and maintain level of shoulders against resistance.
- With shoulders fixed, bilateral contraction extends the neck;
- Unilateral contraction produces flexion to the same side.
- Insert on the clavicle and scapula.
- Act on the scapula.

- The trapezius (middle fibers) retract the scapula
- The trapezius (inferior fibers) depress the shoulders
- The superior and inferior fibers together rotate the scapula upward.
- Innervated by CN XI.

- The <u>latissimus dorsi</u> inserts into the floor of the bicipital groove.
- Extends, adducts, and medially rotates the arm.
- Used in climbing.
- Innervated by the thoraco-dorsal nerve.

- The levator scapulae, rhomboid minor and rhomboid major muscles lie inferior to the latissimus dorsi.
- All insert on the medial border of the scapula.
- They serve to rotate the scapula to turn the glenoid cavity inferiorly.
- Levator scapula innervated by C3-C4 and the dorsal scapular nerve.
- The rhomboids are innervated by the dorsal scapular nerve.

#### Intermediate muscles of the back

- Intermediate muscles of the back serve a respiratory
  <u>function.</u>
- Kinesiological monitor (proprioceptive).
- The serratus posterior superior elevates the 2<sup>nd</sup>-5<sup>th</sup> ribs.
- Innervated by T1-T4.
- The serratus posterior inferior depresses the 9<sup>th</sup>-12<sup>th</sup> ribs.
- Innervated by T9-T12.

- The deep muscles of the back are arranged in two layers:
- The more superficial layer contains the splenius muscle and the erector spinae (ileocostalis, longissimus, and spinalis muscles).
- The deeper layer contains the transverso-spinal muscles (semispinalis, multifidus, and rotators).

- The <u>splenius capitis</u>, acting alone, laterally flexes the neck and rotates the head to the side of activity.
- With the <u>splenius cervicis</u>, it extends the head and neck as a unit.
- The <u>erector spinae</u>, acting unilaterally, flex the vertebral column.
- Acting bilaterally, they extend the vertebral column and head.
- As the back is flexed, they control motion by gradually lengthening fiber length.

- The <u>transverso-spinal</u> muscles originate on the transverse processes and insert on the spinous processes.
- The transverso-spinal muscles extend the vertebral column.
- The <u>semi-spinalis</u> extends the head as well as cervical and thoracic regions of the vertebral column and rotates them contralaterally.

- The <u>multifidus</u> stabilizes vertebrae during local movements of the vertebral column.
- The <u>rotatores</u> stabilize the vertebrae and assist with local extension and rotatory movements of the column.
- Kinesiological monitor.

# Minor muscles of the back

- Interspinales aid in extension and rotation of the vertebral column while the intertransversii aid in lateral flexion of the vertebral column.
- Acting bilaterally, the intertransversii stabilize the vertebral column.
- The <u>levatores costarum</u> assist with lateral flexion of the vertebral column.
- The <u>intercostals</u> function during forced respiratory maneuvers.

# Sub-occipital triangle

- <u>The rectus capitis posterior major, obliquus capitis</u> <u>superior and inferior run in the triangle.</u>
- The rectus capitis minor does not serve as a boundary.
- Innervated by dorsal ramus of C1.
- The roof of the triangle is the semispinalis capitis.
- The floor is the posterior atlanto-occipital membrane.
- <u>The posterior inferior cerebellar artery (from the</u> <u>vertebral artery in the cranial cavity) is contained</u> <u>within the triangle.</u>

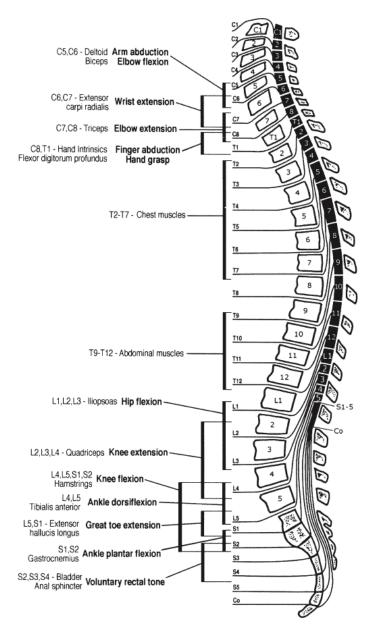
#### Anterior pre-vertebral muscles

- The longus colli flexes the neck with rotation (torsion) to opposite side if acting unilaterally.
- The longus capitis, rectus capitis anterior, and the anterior scalene muscles bend the head anteriorly or laterally (flexion) relative to the vertebral column at the atlanto-axial joints.

#### Lateral pre-vertebral muscles

- The rectus capitis lateralis bends the head anteriorly or laterally (flexion) relative to the vertebral column at the atlanto-axial joints, and helps stabilize the head.
- The <u>splenius capitis</u> laterally flexes and rotates the head and neck to the same side.
- Acting bilaterally, they extend the head and neck
- Rotation occurs about the atlanto-axial joints
- The <u>middle and posterior scalene muscles</u> flex the neck laterally as well as elevate the first and second ribs during forced inspiration.

# Muscles producing movement of the atlanto-axial joint


- <u>Flexion</u> is produced by the longus capitis, rectus capitis anterior, suprahyoid and infrahyoid muscles as well as anterior fibers of the sternocleidomastoid muscle.
- <u>Extension</u> is produced by the rectus capitis posterior (major and minor), superior oblique of head, splenius capitis, longissimus capitis, and trapezius muscles.
- <u>Lateral bending</u> is produced by the sternocleidomastoid, superior oblique of head, rectus capitis lateralis, longissimus capitis, and splenius capitis muscles.

# Muscles producing movement of the cervical spine

- <u>Flexion</u> is produced by the bilateral action of the longus coli, scalene, and sternocleidomastoid muscles.
- <u>Extension</u> is produced by the bilateral action of the semispinalis cervicis and iliocostalis cervicis (1); splenius cervicis and levator scapulae (2); splenius capitis (3); multifidus (4); longissimus capitis (5); semispinalis capitis (6); and trapezius muscles.

# Muscles producing movement of the cervical spine

- Unilateral action of the iliocostalis cervicis, longissimus capitis and cervicis, splenius capitus and cervicis, as well as the intertransversii and scalenes produce <u>lateral bending.</u>
- Unilateral action of the rotatores, semispinalis capitis and cervicis, multifidus, and splenius cervicis muscles produce <u>rotation</u>.



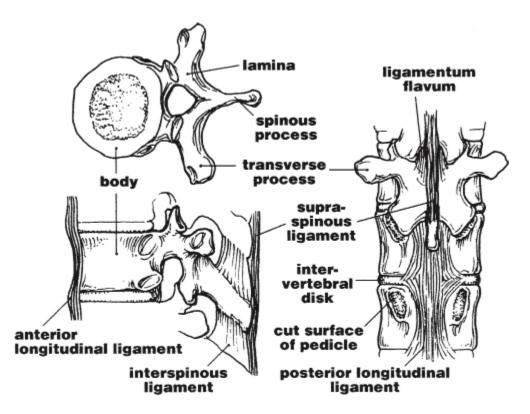
# Vertebral column

Fig. 256-6 Accessed 05/05/2010

Source: Tintinalli JE, Kelen GD, Stapczynski JS: *Tintinalli's Emergency Medicine: A* Comprehensive Study Guide, 6th Edition: http://www.accessemergencymedicine.com

- The cervical spine consists of seven vertebrae.
- C1 is located immediately behind the angle of the mandible.
- The transverse process of the atlas is positioned between the angle of the mandible and the mastoid process.
- The hyoid bone is anterior to the level of C3; the thyroid cartilage is anterior to C4; and the cricoid cartilage is at the level of C6.

- The upper cervical spine (occipito-atlanto-axial complex) is unique and is made up of the base of the skull, atlas (C1), axis (C2), and the transverse, accessory, and alar ligaments.
- The atlas (C1) supports the occipital condyles in its lateral masses.
- This articulation allows for flexion and extension but no rotation.
- The articular surfaces of the atlas (C1) and axis (C2) are convex to each other and allow flexion, extension, and especially rotation to occur.


- The mid and lower cervical spine (C3 to C7) consists of vertebrae which are similar in size and shape.
- These vertebral bodies articulate with each other via their superior and inferior articular processes, enabling limited rotation and lateral flexion.
- The vertebral vessels pass through a foramen surrounded by the transverse processes of each vertebra.
- C6 has the carotid tubercle
- Only the vein passes through C7.

- The costal element of C7 is part of the transverse process.
- May elongate, compressing the thoracic outlet.

#### Dermatomes

- C1 does not innervate any skin
- C2 innervates the back of the scalp
- C3 innervates the back of the neck
- C4 and C5 innervate the shoulder
- C6 innervates the thumb and index finger
- C7 innervates the middle finger
- C8 innervates the ring and little finger

### Vertebral body



Source: Tintinalli JE, Kelen GD, Stapczynski JS: *Tintinalli's Emergency Medicine: A Comprehensive Study Guid*e, 6th Edition: http://www.accessemergencymedicine.com

Copyright @ The McGraw-Hill Companies, Inc. All rights reserved.

Fig. 256-1 Accessed 05/05/2010

The <u>anterior longitudinal</u> <u>ligament</u> checks hyperextension.

The <u>posterior</u> <u>longitudinal ligament</u> lies within the neural arch and limits posterior disc protrusion.

The <u>ligamentum flavum</u> lies within the neural arch and connects laminae.

# Atlanto-occipital joint

- Plane sliding synovial joint.
- Anterior-posterior motion checked by anterior and posterior atlanto-occipital membrane.
- Occiput which sidebends left and rotates right is either posterior right or anterior left.
- Occiput which sidebends right and rotates left is either posterior left or anterior right.
- <u>Sidebending and rotation are "always" in opposite</u> <u>directions.</u>
- If the occiput rotates left on the axis, the occiput slides left and sidebends right.

# Atlanto-axial joints

- There is no disc between C1 and C2.
- Paired lateral joints are sliding planes.
- Median joint is pivot.
- Anterior surface of <u>dens</u> articulates with atlas, while posterior surface of dens articulates with the transverse ligament of the axis.
- Transverse ligament is part of cruciate ligament.
- <u>Alar ligaments</u> attach dens to lateral sides of foramen magnum.

# C3-C7 vertebral bodies

- Thickest of spinal disks (disk height : vertebral body ratio is 2:5).
- Wedge shaped (thicker anteriorly)
- Maintains Cervical lordosis.
- <u>C2-C3 point of stress</u>.
- Facets form palpable articular pillars.
- The superior face is backward and upward
- The inferior face is forward and downward.
- Rotation and side bending are coupled in same direction.

# Unciform joints (joints of Lushka)

- Maintain stability while allowing motion.
- Adaptation for upright posture.
- Synovial lined lateral edges of cervical vertebral bodies.
- Develop at age 8-10 yrs.
- Site of osteophyte formation.
- Act as "guide rails" for flexion and extension.
- Limit lateral translatory motion (side slip) that occurs with the coupled motions of rotation and sidebending.
- Rotation and sidebending could be excessive to the point of subluxation if not for the unciform joints.

# Occipito-atlantal joint

- The superior facets of the atlas face backward, upward and medially
- Are concave.
- The occipital condyles match the facets of the atlas.
- <u>Compression may affect CN IX-XII.</u>
- Motion is limited by muscular and ligamentous attachments (principally the lateral occipito-atlantal ligaments).
- Flexion and extension are the primary motions.
- Complementary motions at the occiput are rotation and sidebending.

# Occipito-atlantal dissociation

- In occipito-atlantal dissociation, the skull may be displaced anteriorly or posteriorly or distracted from the cervical spine.
- Occipito-atlantal dissociation frequently results in death.
- To exclude subluxation, the basion-axial interval (the distance between the tip of the clivus and a line extending from the posterior cortex of C2) should not exceed 12 mm.

# Atlanto-axial joint

- Rotation only.
- Motion is limited by the dens and by the transverse ligament of the atlas.
- There are four facets.
- They are all convex in shape
- "Wobble" in flexion or extension (no true lateral flexion).
- With rotation to the right, the left facet of atlas slides uphill while the right facet of atlas slides downhill.

# C3-C7 motion

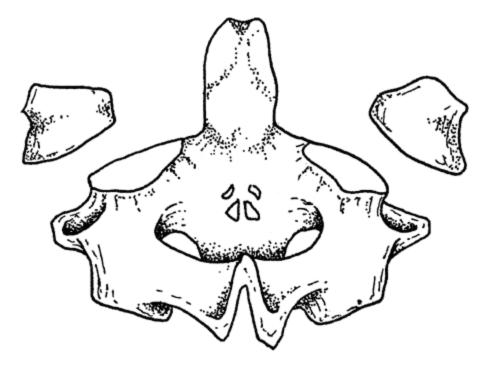
- Move least in flexion or extension.
- Flexion (forward bending)
  - inferior facet must slide up 45 degree angle
  - rotation is primary motion
- Extension (backward bending)
  - normal lordotic curve
  - side bending is primary motion
- There is no "neutral position"

# Herniated nucleus pulposus

- Nucleus pulposus is remnant of notochord.
- Avascular.
- Surrounded by annulus fibrosis.
- Herniation of disc occurs in a posterolateral direction.
- The nucleus pulposus pushes the annulus fibrosis and posterior longitudinal ligament.
- The posterior longitudinal ligament blocks direct posterior protrusion.

#### Herniated nucleus pulposus

- The most common site of herniation in the cervical spine is the disc between C5 and C6 (affecting spinal level C6).
- The most common site of herniation in the lumbar region is the disc between L4 and L5 (affecting spinal level L5).


# Cervical spine fracture

- The Jefferson fracture is usually produced when the cervical spine is subjected to an axial load due to a direct blow to the top of the head.
- The occipital condyles are displaced downward and produce a burst fracture by driving the lateral masses of C1 apart.
- May see rupture of the transverse ligament.
- More than 3mm predental space is compatible with damage to the ligament.

# Cervical spine fracture

- Fractures of the odontoid are usually due to major forces
- Hyperextension is associated with traumatic spondylolisthesis of the axis
- "Hangman's fracture"

#### Jefferson fracture



Source: Tintinalli JE, Kelen GD, Stapczynski JS: *Tintinalli's Emergency Medicine: A Comprehensive Study Guid*e, 6th Edition: http://www.accessemergencymedicine.com

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

Fig. 272-8 Accessed 05/05/2010

## Hangman's fracture



Source: Tintinalli JE, Kelen GD, Stapczynski JS: *Tintinalli's Emergency Medicine: A Comprehensive Study Guide*, 6th Edition: http://www.accessemergencymedicine.com Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

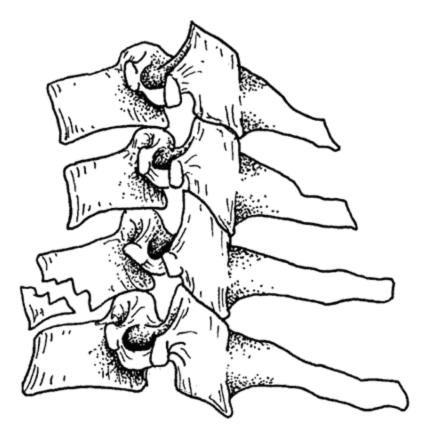
Fig. 272-10 Accessed 05/05/2010

# Cervical spine instability

- Instability of the anterior column can occur when the anterior 20 percent of the vertebral body is damaged by compression
- <u>Teardrop fracture</u>.
- Loss of 25 percent or more of the vertebral body
  height also is a marker of failure.

# Cervical spine instability

- Loss of integrity of the posterior wall of a vertebral body is a marker for instability in the middle column:
- Widening of pedicles
- Loss of more than 25 percent of posterior vertebral body height
- The presence of sagittal plane fracture lines through the posterior vertebral body cortex
- Instability is the result of damage to the facet complex.


# Cervical spine subluxation and fracture

- A pure subluxation injury has no associated fractures.
- In <u>hyperflexion</u> sprain (anterior subluxation), the posterior ligamentous structures fail, because of the hyperflexion of the cervical spine.
- Intense flexion against contracted posterior erector spinal muscles causes avulsion of the spinous process (<u>clay-shoveler's fracture</u>)
- Usually of C7.
- An isolated clay-shoveler's fracture is mechanically stable.

# **Teardrop fracture**

- Caused by extreme flexion
- Complete disruption of all ligaments at the level of injury
- The "teardrop" is the anterior-inferior portion of the vertebral body which is separated and displaced from the rest of the vertebral body
- It is mechanically unstable
- Hyperkyphosis of the fracture impinges upon the spinal cord causing an anterior cord syndrome

## Flexion-teardrop fracture



Source: Tintinalli JE, Kelen GD, Stapczynski JS: *Tintinalli's Emergency Medicine: A Comprehensive Study Guide*, 6th Edition: http://www.accessemergencymedicine.com

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

Fig. 272-13 Accessed 05/05/2010

# Cervical spine facet dislocation

- Simultaneous forces of flexion and rotation can produce a <u>unilateral facet dislocation</u>.
- The articular mass and inferior facet on one side of the vertebra are anteriorly dislocated.
- Stable.

# Cervical spine facet dislocation

- Bilateral interfacetal dislocation
- Disruption of all ligamentous structures due to hyperflexion
- The articular masses of the involved vertebra dislocate superiorly and anteriorly over into the intervertebral foramen inferior to the involved vertebra.
- Unstable.

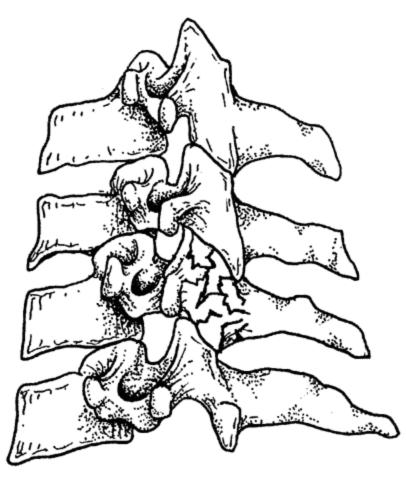
## **Bilateral interfacetal dislocation**



Source: Tintinalli JE, Kelen GD, Stapczynski JS: *Tintinalli's Emergency Medicine: A Comprehensive Study Guide*, 6th Edition: http://www.accessemergencymedicine.com

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

Fig. 272-14 Accessed 05/05/2010


# Cervical spine fracture

- Extension and rotation can cause impaction of a superior vertebra on the articular mass of its inferior neighbor.
- The resultant vertical or oblique fracture of the articular mass is called a <u>pillar fracture</u>.
- The adjacent lamina and pedicle remain intact.
- Stable.

# Cervical spine fracture

- A direct axial load causes a <u>burst fracture</u> of the lower cervical spine.
- The axial force causes the vertebra to burst, with fragments displacing in all directions.
- The spinal cord may be injured if a fragment enters the spinal canal.
- Unstable.

## Pillar fracture

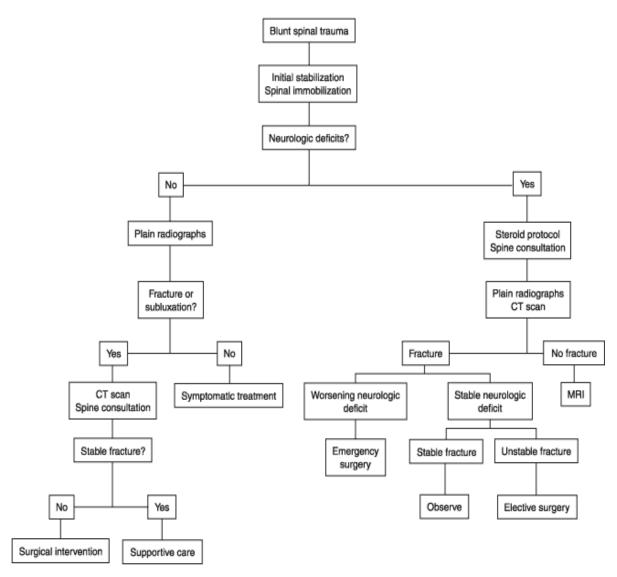


Source: Tintinalli JE, Kelen GD, Stapczynski JS: *Tintinalli's Emergency Medicine: A Comprehensive Study Guide*, 6th Edition: http://www.accessemergencymedicine.com

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

Fig. 272-17 Accessed 05/05/2010

# Cervical spine fracture


- A hyperextension injury involves a complete tear of the anterior longitudinal ligament and intervertebral disk, with disruption of the posterior ligamentous complex.
- Facial trauma with a central cord syndrome is the most common clinical presentation.
- A hyperextension mechanism may cause the anterior longitudinal ligament to avulse the inferior portion of the anterior vertebral body at its insertion.
- The height of the fragment usually exceeds its width.
- This fracture is more common in older patients with osteoporosis.
- The extension teardrop fracture is unstable in extension.

# Cervical spine fracture

- Lateral flexion can cause a transverse fracture at the base of the uncinate process
- The lateral aspect of the superior vertebral body fractures the inferior uncinate process.
- During the initial injury, the degree of lateral neck flexion is limited, because the head strikes the shoulder.

# Approach to a spine injury

- Patients with possible head or neck trauma who are not fully alert, Glasgow Coma Scale (GCS) <15, should have imaging of their cervical spines.</li>
- The frequency of cervical spine injury in association with blunt head trauma is approximately 2 to 5 percent.
- It increases to almost 9 percent in patients with significant head injury, defined as a GCS score <10.</li>
- <u>A single lateral cervical spine film will identify 90 percent of injuries to bone and ligaments. The open-mouth odontoid view will identify many of the remaining abnormalities.</u>



Source: Tintinalli JE, Kelen GD, Stapczynski JS: *Tintinalli's Emergency Medicine: A Comprehensive Study Guid*e, 6th Edition: http://www.accessemergencymedicine.com Fig. 256-7 Accessed 05/05/2010

Copyright @ The McGraw-Hill Companies, Inc. All rights reserved.

- Disc between T4 and T5 is at the plane separating the superior and inferior mediastinum.
- T8 is at the level of the foramen for the inferior vena cava and the right phrenic nerve.
- T10 is at the level of the esophageal hiatus.
- T12 is at the level of the aortic (and thoracic duct) hiatus as well as the origin of the celiac axis.

- L1 is at the origin of the superior mesenteric artery.
- L3 is at the origin of the inferior mesenteric artery.
- Disc between L3 and L4 is at the level of the umbilicus.
- L4 is at the level of the union of the common iliac veins to form the inferior vena cava.

## Dermatomes

- T4 is at the nipple
- T7 is at the xiphoid process
- T10 is at the umbilicus
- L1 is at the suprapubis
- L4 innervates the first toe and medial side of the foot
- L5 innervates the 2<sup>nd</sup>-4<sup>th</sup> toes
- S1 innervates the fifth toe and the lateral side of the foot

- The thoracic and lumbar spine is relatively more protected and stable than the cervical spine.
- Vertebrae T1 through T10 are fixed, owing to their articulation with the thoracic cage.
- Large forces are required to fracture thoracic vertebrae, and neurologic abnormalities are common.
- <u>The mobility of the thoraco-lumbar junction</u> predisposes it to injury.
- <u>The thoraco-lumbar junction is second only to the</u> <u>cervical spine in frequency of injury.</u>

- The anterior column contains the vertebral column and the intervertebral disks.
- Its functions are:
- Support
- Weight bearing
- Shock absorbance
- Protection of the spinal cord.
- The anterior column bends
- The disks accommodate
- Moves away from the concave side.

- The posterior column includes the transverse processes and the spinous processes.
- Its functions are to direct joint motion (facets and ligaments) and protect the spinal cord.
- In the upright position it contributes little to weight bearing.
- The posterior column moves away from the concave side during sidebending.

#### Thoracic and lumbar muscle function

- <u>Flexion</u> is produced by the bilateral action of the rectus abdominus and psoas major muscles.
- <u>Extension</u> is produced by the bilateral action of erector spinae, multifidus, and semispinalis thoracis muscles.
- Lateral bending is produced by the unilateral action of the iliocostalis thoracis and lumborum, longissimus thoracis, multifidus, external and internal oblique, quadratus lumborum, rhomboids, and the serratus anterior muscles.

#### Thoracic and lumbar muscle function

<u>Rotation</u> is produced by the unilateral action of the rotatores, multifidus, iliocostalis, longissimus, splenius thoracis and external oblique (synchronously with the opposite internal oblique) muscles.

# Kyphosis and lordosis

- <u>Kyphosis</u> refers to exaggerated thoracic curvature.
- Can be due to:
- Poor posture
- Structural abnormality (<u>Scheurmann's disease</u>)
- Congenital anomalies in the vertebral bodies.
- <u>Symptomatic patients have signs of nerve</u> <u>compression.</u>
- May require orthoses or casting.
- Congenital kyphosis requires surgical correction as it may lead rapidly to paraplegia.
- Lordosis refers to exaggerated lumbar curvature.

- Idiopathic scoliosis is painless curvature of the spine
- Usually convex to the right
- May have thoracic as well as lumbar deformities.
- CHAD7 gene mutation associated with disorder.
- Presents in childhood or adolescence.
- Elevated shoulder and/or short-leg syndrome as presenting signs.

- Curvatures are best treated at an early age when there is little deformity (10-15°)
- The Schroth method is an exercise program individualized to patient curvature to restore function in three dimensions
- Bracing (to reduce curvature angle by 50%)
- Braces must be worn >20 hours daily.

- High degrees of scoliosis (>40<sup>0</sup>) are treated surgically.
- Rod placement (extendible) and bone fusion (utilizing recombinant human bone morphogenetic protein at prosthesis sites) successful.
- However, 2-3° curvature loss yearly post-surgery.
- Loss may be delayed by continuation of Schroth exercise regimen.
- Pulmonary function impairment the major problem with idiopathic scoliosis.

- <u>Congential scoliosis</u> is a curvature of the spine that is due to a defect in the formation of vertebrae or disks.
- May present with bladder problems, loss of motor function in lower limbs.
- Requires spinal fusion if severe.

- <u>Neuromuscular scoliosis</u> is a curvature of the spine due to weakening of muscles due to progressive neuromuscular disorders:
- Muscular dystrophy, cerebral palsy, superior mesenteric artery syndrome, spina bifida
- The curvature is progressive due to progression of weakness.

#### Lumbar spondylosis and spondylisthesis

- <u>Spondylosis</u> is a defect allowing the posterior projection from the vertebral body that surrounds the spinal canal and bears the articular, transverse, and spinal processes, to be separated from its body.
- The defect resembles a Scot Terrier on oblique view.
- When the vertebral arch defect is bilateral, the body of the vertebra may slide anteriorly. (Spondylisthesis.)
- This may cause nerve compression.
- This may interfere with parturition.

# Lumbosacral joint

- L5 rotates in the opposite direction to the sacrum.
  L5 sidebends on the oblique axis of the sacrum.
- Sacral torsions rotate on an axis.
- Sacral torsion is diagnosed when the deep sulcus and the posterior-inferior ischiolumbar are on opposite sides.
- With a forward torsion, the restriction is in flexion (left on left; right on right).
- With a backward torsion, the restriciton is in extension.

# Conus medullaris

- The spinal cord ends at L1 (or L2), the conus medullaris.
- The individual nerve roots extending from the conus medullaris constitute the cauda equina.
- These nerve roots are less susceptible to damage and neurologic injury, because trauma to the lower lumbar and sacral segments occurs less often and is less severe.
- The dural-arachnoid sac extends inferiorly to S2.
- Filum terminale attaches spinal cord to coccyx.

# Freyette principle I

- Spine is in neutral.
- Group motion involves more than one vertebra.
- Sidebending occurs to the side of concavity.
- Rotation occurs opposite that of the sidebending (to the convexity).
- Maximal rotation at the apex.
- Prominent muscle mass at the convexity.
- Rotation is a normal movement of spine.
- When due to dysfunction, usually because of contracted musculature.

# Freyette principle II

- Single segment motion restriction.
- Involves flexion and extension.
- Rotation and sidebending to the same side (toward the concavity).
- Posterior component on the side of concavity.
- These are lesions that occur suddenly.
- <u>Usually involves a motion to another plane while in</u> an extreme position in one plane.

# Freyette principle III

- Initiate motion in any plane.
- This will modify the movement in other planes of motion.
- Freyette did not write about the cervical or the lumbar spine.

# Back pain

- Inter-observer agreement is low for assessment of bone tenderness (κ 0.40) or soft tissue tenderness (κ 0.24).
- <u>Absence of sciatica makes clinically important disc</u> <u>herniation unlikely</u> (straight leg raising interobserver agreement, a κ of 0.70; weak ankle dorsiflexion, a κ of 1.0).
- Ankle reflexes diminish with age
- 30% over age 60 lack one or both ankle reflexes.
- <u>The single leg sit to stand is the most reliable test to</u> <u>detect quadriceps weakness</u> (κ of 0.85; positive likelihood, LR+, 26)

# Back pain

- 20% of patients aged 14-25 years have degenerative disks on plain x-rays of the spine but are asymptomatic
- 75% of patients >50 years of age have bulging or herniated disks on MRI but are asymptomatic (90% have degenerated disks)
- 20% of patients >50 years of age have spinal stenosis but are asymptomatic
- <u>Anatomic abnormalities are not necessarily</u> <u>causative of back pain nor generally influence initial</u> <u>treatment decisions.</u>
- Generally resolve with conservative measures.

### Low back pain

- <u>L4-L5 and L5-S1 disk compressions comprise 98%</u> of symptomatic presentations
- Moderate to severe pain radiating from the back down the buttock and leg, usually to the foot or ankle. (<u>Sciatica</u>). Positive likelihood ratio, LR+, 7.9.
- <u>Straight leg test is positive if it reproduces sciatica</u> when leg is elevated between 30-60°.
- <u>A pulling sensation in the hamstrings or pain in the back when the leg is raised are negative findings.</u>
- <u>Most common site of weakness is foot (plantar</u> flexion or dorsiflexion).

#### Low back pain

- Proximal weakness suggests femoral neuropathy or lumbar plexus compression.
- <u>Associated numbress, paresthesias, motor</u> weakness can occur in the absence of pain
- Pain worsened by Valsalva maneuver
- No bowel or bladder symptoms with unilateral disk herniations
- CT or MRI of equal utility.
- Image those who do not respond to therapy.

### Low back pain

- NSAIDs important for pain control.
- Opioids may be required.
- Osteopathic manipulation may shorten disability by 1-2 days.
- Bed rest does not hasten recovery.
- Median time to recovery is 12 weeks.
- 50% recur.
- If surgery required, median time to recovery is 4 weeks.

### Spinal stenosis

- Claudication symptoms with back pain.
- Usually bilateral and relieved by sitting or bending forward.
- Worsened by extension.
- <u>Central stenosis</u> associated with bilateral, nondermatomal pain involving the buttocks and posterior thighs.

#### Spinal stenosis

- <u>Lateral stenosis</u> associated with pain in a dermatomal distribution.
- <u>Lumbar spinal stenosis does not progress to</u> <u>paralysis.</u>
- <u>Cervical and thoracic stenoses may cause</u> myelopathy and lead to paralysis.

### Cauda equina syndrome

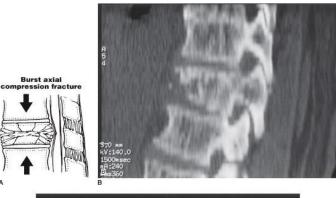
- Bilateral sciatica
- Sensory loss in a saddle distribution
- <u>Urinary retention diagnostic (positive likelihood ratio,</u> LR+, 18; LR-, 0.1).
- Decreased anal sphincter tone seen in 80%
- Bilateral midline herniations
- <u>This is a medical emergency requiring</u> <u>decompression.</u>

#### Vertebral metastases

- <u>Constant back pain not relieved by rest and</u> worsened at night is suggestive of malignancy.
- Once <u>cord compression</u> begins, it can proceed rapidly.
- This is a medical emergency.
- Previous history of cancer has a positive likelihood ratio, LR+, of 14.7 for a diagnosis of vertebral metastasis.
- More than 50% loss of trabecular bone before lytic lesion apparent on plain radiographs.
- Bone scan may not detect lytic lesions.
- MRI best test to evaluate cord compression.

# **Compression fractures**

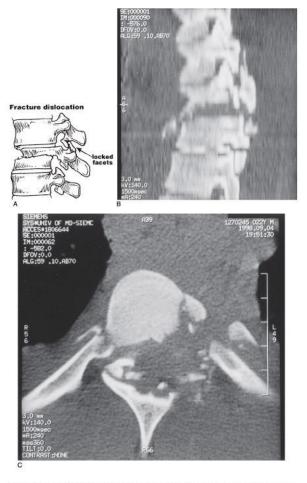
- Compression fractures present as acute, severe pain that radiates around the flank to the abdomen.
- May be precipitated by trivial activity.
- Worsened by movement.
- Usually mid-thoracic to lumbar region.
- Osteoporosis most common cause.
- <u>A compression fracture above T4 is usually due to</u> <u>malignancy.</u>
- MRI best test to distinguish malignant lesion from osteoporotic compression fracture.
- Pain usually resolves in several weeks with conservative therapy.


## Wedge and burst fractures

- A <u>wedge fracture</u> of a vertebra is caused by compression between two other vertebrae.
- The superior end plate fractures while the inferior surface of the vertebra remains intact.
- The posterior ligaments may be disrupted, leading to an increase in the distance between spinous processes.
- Posterior element disruption makes the injury unstable.
- <u>The simple wedge fracture is differentiated from a burst</u> <u>fracture by the absence of a vertical fracture of the vertebral</u> <u>body.</u>

#### Wedge and burst fractures

Wedge compression fracture C


Source: Tintinalli JE, Kelen GD, Stapczynski JS: *Tintinall's Emergency Medicine: A Comprehensive Study Guide*, 6th Edition: http://www.accessemergencymedicine.com Copyright @ The McGraw-Hill Companies, Inc. All rights reserved.





Source: Tintinalli JE, Kelen GD, Stapczynski JS: *Tintinalli's Emergency Medicine: A Comprehensive Study Guide*, 6th Edition: http://www.accessemergencymedicine.com Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

#### Fracture dislocation



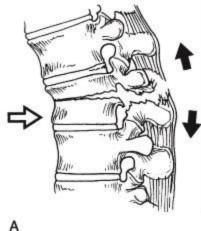

Source: Tintinalli JE, Kelen GD, Stapczynski JS: *Tintinalli's Emergency Medicine: A Comprehensive Study Guide*, 6th Edition: http://www.accessemergencymedicine.com Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

Fig. 256-5 Accessed 05/05/2010

## **Flexion-distraction fracture**

INJ

**Flexion-distraction fracture** 



C

Fig. 256-4 Accessed 05/05/2010

*Comprehensive Study Guide*, 6th Edition: http://www.accessemergencymedicine.com Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

в

Source: Tintinalli JE, Kelen GD, Stapczynski JS: Tintinalli's Emergency Medicine: A

#### Epidural abscess

- <u>Rapidly progressing neurological deficits in a patient</u> with fever and back pain
- History of diabetes
- Parenteral drug use
- May see after instrumentation of bladder
- Infection occurs by contiguous spread in one-third of cases
- Hematogenous spread in half the cases
- May be associated with osteomyelitis involving adjacent vertebrae with collapse of the disk

#### **Epidural abscess**

- More common in posterior epidural space
- More common in thoraco-lumbar region
- Generally extend over several vertebrae
- Staphylococcus aureus the usual organism.
- Streptococcus B and G are seen as well in diabetic patients.
- Gram negative enteric organisms may be found
  after instrumentation of the bladder
- MRI imaging
- Requires decompression and drainage